This repository was archived by the owner on Oct 16, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter_7.py
433 lines (371 loc) · 11.6 KB
/
chapter_7.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
"""
Copyright Jeremy Nation <jeremy@jeremynation.me>.
Licensed under the MIT license.
Almost entirely copied from code created by Sebastian Raschka, also licensed under the MIT license.
"""
from itertools import product
import math
import os
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy.misc import comb
from sklearn import datasets
from sklearn.base import (
BaseEstimator,
ClassifierMixin,
clone,
)
from sklearn.cross_validation import (
cross_val_score,
train_test_split,
)
from sklearn.ensemble import (
AdaBoostClassifier,
BaggingClassifier,
)
from sklearn.externals import six
from sklearn.grid_search import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import (
accuracy_score,
auc,
roc_curve,
)
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import (
_name_estimators,
Pipeline,
)
from sklearn.preprocessing import (
LabelEncoder,
StandardScaler,
)
from sklearn.tree import DecisionTreeClassifier
def ensemble_error(n_classifier, error):
k_start = math.ceil(n_classifier / 2.0)
probs = [
comb(n_classifier, k) * error**k * (1-error)**(n_classifier-k)
for k in range(k_start, n_classifier+1)
]
return sum(probs)
def plot_ensemble_error():
error_range = np.arange(0.0, 1.01, 0.01)
ensemble_errors = [
ensemble_error(n_classifier=11, error=error) for error in error_range
]
plt.plot(
error_range,
ensemble_errors,
label='Ensemble error',
linewidth=2,
)
plt.plot(
error_range,
error_range,
linestyle='--',
label='Base error',
linewidth=2,
)
plt.xlabel('Base error')
plt.ylabel('Base/Ensemble error')
plt.legend(loc='upper left')
plt.grid()
plt.show()
def use_adaboost_classifier():
tree = DecisionTreeClassifier(
criterion='entropy',
max_depth=1,
random_state=0,
)
ada = AdaBoostClassifier(
base_estimator=tree,
n_estimators=500,
learning_rate=0.1,
random_state=0,
)
return use_ensemble_classifier(tree, 'Decision tree', ada, 'AdaBoost')
def use_bagging_classifier():
tree = DecisionTreeClassifier(
criterion='entropy',
max_depth=None,
random_state=3,
)
bag = BaggingClassifier(
base_estimator=tree,
n_estimators=500,
max_samples=1.0,
max_features=1.0,
bootstrap=True,
bootstrap_features=False,
random_state=1
)
return use_ensemble_classifier(tree, 'Decision tree', bag, 'Bagging')
def use_ensemble_classifier(clf1, label1, clf2, label2):
df = pd.read_csv(os.path.join('datasets', 'wine.data'), header=None)
df.columns = [
'Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash',
'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols',
'Proanthocyanins', 'Color intensity', 'Hue',
'OD280/OD315 of diluted wines', 'Proline',
]
df = df[df['Class label'] != 1]
X = df[['Alcohol', 'Hue']].values
y = df['Class label'].values
label_encoder = LabelEncoder()
y = label_encoder.fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(
X,
y,
test_size=0.4,
random_state=1,
)
clfs = [clf1, clf2]
labels = [label1, label2]
for clf, label in zip(clfs, labels):
clf = clf.fit(X_train, y_train)
y_train_pred = clf.predict(X_train)
y_test_pred = clf.predict(X_test)
clf_train = accuracy_score(y_train, y_train_pred)
clf_test = accuracy_score(y_test, y_test_pred)
print(
"%s train/test accuracies %.3f/%.3f" %
(label, clf_train, clf_test)
)
x_min = X_train[:, 0].min() - 1
x_max = X_train[:, 0].max() + 1
y_min = X_train[:, 1].min() - 1
y_max = X_train[:, 1].max() + 1
xx, yy = np.meshgrid(
np.arange(x_min, x_max, 0.1),
np.arange(y_min, y_max, 0.1),
)
f, axarr = plt.subplots(
nrows=1,
ncols=2,
sharex='col',
sharey='row',
figsize=(8, 3),
)
for index, clf, tt in zip([0, 1], clfs, labels):
clf.fit(X_train, y_train)
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
axarr[index].contourf(xx, yy, Z, alpha=0.3)
axarr[index].scatter(
X_train[y_train == 0, 0],
X_train[y_train == 0, 1],
c='blue',
marker='^',
)
axarr[index].scatter(
X_train[y_train == 1, 0],
X_train[y_train == 1, 1],
c='red',
marker='o',
)
axarr[index].set_title(tt)
axarr[0].set_ylabel('Alcohol', fontsize=12)
plt.text(9.8, -1, s='Hue', ha='center', va='center', fontsize=12)
plt.show()
def use_majority_vote_classifier():
iris = datasets.load_iris()
X = iris.data[50:, [1, 2]]
y = iris.target[50:]
label_encoder = LabelEncoder()
y = label_encoder.fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(
X,
y,
test_size=0.5,
random_state=1,
)
clf1 = LogisticRegression(penalty='l2', C=0.001, random_state=0)
clf2 = DecisionTreeClassifier(
max_depth=1,
criterion='entropy',
random_state=0,
)
clf3 = KNeighborsClassifier(n_neighbors=1, p=2, metric='minkowski')
pipe1 = Pipeline([['sc', StandardScaler()], ['clf', clf1]])
pipe3 = Pipeline([['sc', StandardScaler()], ['clf', clf3]])
mv_clf = MajorityVoteClassifier(classifiers=[pipe1, clf2, pipe3])
all_clf = [pipe1, clf2, pipe3, mv_clf]
clf_labels = [
'Logistic Regression',
'Decision Tree',
'KNN',
'Majority Voting',
]
print('10-fold cross-validation:\n')
for clf, label in zip(all_clf, clf_labels):
scores = cross_val_score(
estimator=clf,
X=X_train,
y=y_train,
cv=10,
scoring='roc_auc',
)
print(
"ROC AUC: %0.2f (+/- %0.2f) [%s]" %
(scores.mean(), scores.std(), label)
)
print()
colors = ['black', 'orange', 'blue', 'green']
linestyles = [':', '--', '-.', '-']
for clf, label, clr, ls in zip(all_clf, clf_labels, colors, linestyles):
y_pred = clf.fit(X_train, y_train).predict_proba(X_test)[:, 1]
fpr, tpr, thresholds = roc_curve(y_true=y_test, y_score=y_pred)
roc_auc = auc(x=fpr, y=tpr)
plt.plot(
fpr,
tpr,
color=clr,
linestyle=ls,
label="%s (auc = %0.2f)" % (label, roc_auc)
)
plt.legend(loc='lower right')
plt.plot([0, 1], [0, 1], linestyle='--', color='gray', linewidth=2)
plt.xlim([-0.1, 1.1])
plt.ylim([-0.1, 1.1])
plt.grid()
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.show()
sc = StandardScaler()
X_train_std = sc.fit_transform(X_train)
x_min = X_train_std[:, 0].min() - 1
x_max = X_train_std[:, 0].max() + 1
y_min = X_train_std[:, 1].min() - 1
y_max = X_train_std[:, 1].max() + 1
xx, yy = np.meshgrid(
np.arange(x_min, x_max, 0.1),
np.arange(y_min, y_max, 0.1),
)
f, axarr = plt.subplots(
nrows=2,
ncols=2,
sharex='col',
sharey='row',
figsize=(7, 5),
)
for index, clf, tt in zip(product([0, 1], [0, 1]), all_clf, clf_labels):
clf.fit(X_train_std, y_train)
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
axarr[index[0], index[1]].contourf(xx, yy, Z, alpha=0.3)
axarr[index[0], index[1]].scatter(
X_train_std[y_train == 0, 0],
X_train_std[y_train == 0, 1],
c='blue',
marker='^',
s=50,
)
axarr[index[0], index[1]].scatter(
X_train_std[y_train == 1, 0],
X_train_std[y_train == 1, 1],
c='red',
marker='o',
s=50,
)
axarr[index[0], index[1]].set_title(tt)
plt.text(
-3.5,
-4.5,
s='Sepal width [standardized]',
ha='center',
va='center',
fontsize=12,
)
plt.text(
-11.75,
4.5,
s='Petal length [standardized]',
ha='center',
va='center',
fontsize=12,
rotation=90,
)
plt.show()
# print(mv_clf.get_params())
param_grid = {
'decisiontreeclassifier__max_depth': [1, 2],
'pipeline-1__clf__C': [0.001, 0.1, 100.0],
}
gs = GridSearchCV(
estimator=mv_clf,
param_grid=param_grid,
cv=10,
scoring='roc_auc',
)
gs.fit(X_train, y_train)
for params, mean_score, scores in gs.grid_scores_:
print("%0.3f +/- %0.2f %r" % (mean_score, scores.std() / 2, params))
print("\nBest parameters: %s" % gs.best_params_)
print("Accuracy: %.2f" % gs.best_score_)
class MajorityVoteClassifier(BaseEstimator, ClassifierMixin):
def __init__(self, classifiers, vote='classlabel', weights=None):
if vote not in ('classlabel', 'probability'):
raise ValueError(
"vote must be 'classlabel' or 'probability'; got (vote=%r)" %
vote
)
else:
self.vote = vote
if (weights is not None) and (len(weights) != len(classifiers)):
raise ValueError(
"Number of classifiers and weights must be equal; got %d "
"weights, %d classifiers" % (len(weights), len(classifiers))
)
else:
self.weights = weights
self.classifiers = classifiers
self.named_classifiers = {
k: v for k, v in _name_estimators(classifiers)
}
def fit(self, X, y):
self.label_encoder_ = LabelEncoder()
self.label_encoder_.fit(y)
self.classes_ = self.label_encoder_.classes_
self.classifiers_ = []
for clf in self.classifiers:
fitted_clf = clone(clf).fit(
X,
self.label_encoder_.transform(y)
)
self.classifiers_.append(fitted_clf)
return self
def predict(self, X):
if self.vote == 'classlabel':
predictions = np.asarray(
[clf.predict(X) for clf in self.classifiers_]
).T
maj_vote = np.apply_along_axis(
lambda x: np.argmax(np.bincount(x, weights=self.weights)),
axis=1,
arr=predictions,
)
elif self.vote == 'probability':
maj_vote = np.argmax(self.predict_proba(X), axis=1)
maj_vote = self.label_encoder_.inverse_transform(maj_vote)
return maj_vote
def predict_proba(self, X):
probas = np.asarray(
[clf.predict_proba(X) for clf in self.classifiers_]
)
avg_proba = np.average(probas, axis=0, weights=self.weights)
return avg_proba
def get_params(self, deep=True):
if not deep:
return super(MajorityVoteClassifier, self).get_params(deep=False)
else:
out = self.named_classifiers.copy()
for name, step in six.iteritems(self.named_classifiers):
for k, v in six.iteritems(step.get_params(deep=True)):
out["%s__%s" % (name, k)] = v
return out
if __name__ == '__main__':
# plot_ensemble_error()
# use_majority_vote_classifier()
# use_bagging_classifier()
use_adaboost_classifier()