Skip to content

Commit c8a787a

Browse files
committed
Add decorator for custom op and inductor decomp registration
Summary: This PR adds a decorator to register custom op and also an inductor dcomposition. The goal is for torch.export path to be able to see high level ops like quantize_affine instead of breaking down the op, this is because some backends like xnnpack wants to work with these higher level ops. This is a redo for pytorch#408, difference is we can preserve the enums on the python side in this PR Test Plan: regression tests: python test/quantization/test_quant_api.py python test/integration/test_integration.py also need to check performance with python tutorials/quantize_vit/run_vit_b_quant.py Reviewers: Subscribers: Tasks: Tags:
1 parent c2cf973 commit c8a787a

File tree

2 files changed

+194
-21
lines changed

2 files changed

+194
-21
lines changed

test/integration/test_integration.py

Lines changed: 14 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1244,7 +1244,7 @@ def test_autoquant_manual(self, device, dtype):
12441244
out3 = mod(example_input)
12451245
sqnr2 = SQNR(out, out3)
12461246
self.assertTrue(sqnr2 >= 30)
1247-
1247+
12481248

12491249
@parameterized.expand(combine_parameters(COMMON_DEVICE_DTYPE,
12501250
[
@@ -1376,7 +1376,7 @@ class TestExport(unittest.TestCase):
13761376
list(itertools.product(TENSOR_SUBCLASS_APIS, COMMON_DEVICES, COMMON_DTYPES)),
13771377
)
13781378
@run_supported_device_dtype
1379-
def test_aoti(self, api, test_device, test_dtype):
1379+
def test_export(self, api, test_device, test_dtype):
13801380
if not TORCH_VERSION_AFTER_2_4:
13811381
self.skipTest("aoti compatibility requires 2.4+.")
13821382

@@ -1413,9 +1413,20 @@ def forward(self, x):
14131413

14141414
# make sure it compiles
14151415
example_inputs = (x,)
1416-
model = torch.export.export(model, example_inputs).module()
1416+
from torch._export import capture_pre_autograd_graph
1417+
# TODO: export changes numerics right now, this is because of functionalization according to Zhengxu
1418+
# we can re-enable this after non-functional IR is enabled in export
1419+
# model = torch.export.export(model, example_inputs).module()
1420+
model = capture_pre_autograd_graph(model, example_inputs)
14171421
after_export = model(x)
14181422
self.assertTrue(torch.equal(after_export, ref))
1423+
if api is _int8da_int8w_api:
1424+
targets = [n.target for n in model.graph.nodes]
1425+
self.assertTrue(torch.ops.quant.choose_qparams_affine.default in targets)
1426+
self.assertTrue(torch.ops.quant.quantize_affine.default in targets)
1427+
1428+
1429+
14191430

14201431
class TestUtils(unittest.TestCase):
14211432
@parameterized.expand(COMMON_DEVICE_DTYPE)

torchao/quantization/quant_primitives.py

Lines changed: 180 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -4,13 +4,16 @@
44
# This source code is licensed under the license found in the
55
# LICENSE file in the root directory of this source tree.
66

7-
from enum import Enum
7+
from enum import Enum, auto
88
from typing import List, Optional, Tuple, Dict
99
import torch
1010

1111
from torchao.kernel.intmm import int_scaled_matmul
1212
from torchao.kernel.intmm import safe_int_mm
13-
from torchao.utils import TORCH_VERSION_AFTER_2_3
13+
from torchao.utils import (
14+
TORCH_VERSION_AFTER_2_3,
15+
TORCH_VERSION_AFTER_2_5,
16+
)
1417

1518

1619
__all__ = [
@@ -34,17 +37,17 @@ class MappingType(Enum):
3437
based on this mapping
3538
e.g. scale = (10.2 - (-3.5)) / (7 - (-8))
3639
"""
37-
SYMMETRIC = 0
38-
ASYMMETRIC = 1
40+
SYMMETRIC = auto()
41+
ASYMMETRIC = auto()
3942

4043
class ZeroPointDomain(Enum):
4144
"""Enum that indicate whether zero_point is in integer domain or floating point domain
4245
4346
integer domain: quantized_val = (float_val / scale) (integer) + zero_point (integer)
4447
float domain: quantized_val = (float_val - (zero_point (float) - scale * mid_point)) / scale
4548
"""
46-
INT = 0
47-
FLOAT = 1
49+
INT = auto()
50+
FLOAT = auto()
4851

4952
"""
5053
Map from dtype to the bound value of integers
@@ -69,6 +72,79 @@ class ZeroPointDomain(Enum):
6972
})
7073

7174

75+
# def register_custom_op(name: str):
76+
# from torch._inductor.decomposition import register_decomposition
77+
78+
# def decorator(fn):
79+
# if TORCH_VERSION_AFTER_2_5:
80+
# opdef = torch.library.custom_op(name, mutates_args=())(fn)
81+
# opdef.register_fake(fn)
82+
# register_decomposition([opdef._opoverload])(fn)
83+
# return opdef
84+
# else:
85+
# return fn
86+
87+
# return decorator
88+
89+
quant_lib = torch.library.Library("quant", "FRAGMENT")
90+
91+
# def register_custom_op(lib, schema: str):
92+
# """This decorator is used to preserve some high level operators for torch.export.export
93+
# while still allow them to be decomposed for inductor path
94+
95+
# NOTE: This should be applied at the top, after all other decorators have been applied
96+
# """
97+
# from torch._inductor.decomposition import register_decomposition
98+
99+
# def decorator(fn):
100+
# if TORCH_VERSION_AFTER_2_5:
101+
# # TODO: change order
102+
# lib_namespace = lib.ns
103+
# op_name = schema.split("(")[0]
104+
# lib.define(schema)
105+
# lib.impl(op_name, fn, "CompositeImplicitAutograd")
106+
# op = getattr(getattr(torch.ops, lib_namespace), op_name)
107+
# register_decomposition([op])(fn)
108+
# return op
109+
# else:
110+
# return fn
111+
112+
# return decorator
113+
114+
def register_custom_op(lib):
115+
"""This decorator is used to preserve some high level operators for torch.export.export
116+
while still allow them to be decomposed for inductor path
117+
118+
requirement: make sure `fn.__name__[1:]` is the operator name you want to register
119+
120+
NOTE: This should be applied at the top, after all other decorators have been applied
121+
NOTE: We haven't tested the case when `fn` accepts tensor subclass instance as input,
122+
e.g. uint4 tensor subclass instance, and we'll probably need to figure out what would make
123+
sense for downstream system (like executorch) to accept as well
124+
"""
125+
from torch._inductor.decomposition import register_decomposition
126+
from torch._library.infer_schema import infer_schema
127+
128+
def decorator(fn):
129+
if TORCH_VERSION_AFTER_2_5:
130+
# assuming fn.__name__ starts with `_` and we want to take the rest
131+
# to be the name of the custom op
132+
schema = fn.__name__[1:] + infer_schema(fn)
133+
print("schema:", schema)
134+
# TODO: change order
135+
lib_namespace = lib.ns
136+
op_name = schema.split("(")[0]
137+
lib.define(schema)
138+
lib.impl(op_name, fn, "CompositeImplicitAutograd")
139+
op = getattr(getattr(torch.ops, lib_namespace), op_name)
140+
register_decomposition([op])(fn)
141+
return op
142+
else:
143+
return fn
144+
145+
return decorator
146+
147+
72148
# TODO: decide on if we want to allow custom quant_min/quant_max here
73149
def _get_and_check_qmin_qmax(dtype, quant_min, quant_max):
74150
"""Get quant_min and quant_max args based on dtype and also
@@ -140,7 +216,7 @@ def quantize_affine(
140216
quant_min: Optional[int] = None,
141217
quant_max: Optional[int] = None,
142218
zero_point_domain: ZeroPointDomain = ZeroPointDomain.INT,
143-
):
219+
) -> torch.Tensor:
144220
"""
145221
Args:
146222
input (torch.Tensor): original float32, float16 or bfloat16 Tensor
@@ -174,6 +250,32 @@ def quantize_affine(
174250
Output:
175251
quantized tensor with requested dtype
176252
"""
253+
return _quantize_affine(
254+
input,
255+
block_size,
256+
scale,
257+
zero_point,
258+
output_dtype,
259+
quant_min,
260+
quant_max,
261+
zero_point_domain.name,
262+
)
263+
264+
265+
# @register_custom_op(quant_lib, 'quantize_affine(Tensor input, int[] block_size, Tensor scale, Tensor? zero_point, ScalarType output_dtype, int? quant_min=None, int? quant_max=None, str zero_point_domain="INT") -> Tensor')
266+
@register_custom_op(quant_lib)
267+
def _quantize_affine(
268+
input: torch.Tensor,
269+
block_size: List[int],
270+
scale: torch.Tensor,
271+
zero_point: Optional[torch.Tensor],
272+
output_dtype: torch.dtype,
273+
quant_min: Optional[int] = None,
274+
quant_max: Optional[int] = None,
275+
zero_point_domain: str = "INT",
276+
) -> torch.Tensor:
277+
"""op definition that has compatible signatures with custom op library
278+
"""
177279
# TODO: validations
178280
# TODO: validate scale/zero_point dimensions are compatible with block_size
179281
assert input.dtype in [torch.float32, torch.float16, torch.bfloat16], f"Unsupported input dtype: {input.dtype}"
@@ -188,12 +290,12 @@ def quantize_affine(
188290
if zero_point is not None:
189291
zero_point = zero_point.view(shape_after_reduction)
190292

191-
if zero_point_domain == ZeroPointDomain.INT:
293+
if zero_point_domain == ZeroPointDomain.INT.name:
192294
quant = torch.clamp(
193295
torch.round(input * (1.0 / scale)) + zero_point, quant_min, quant_max
194296
).to(output_dtype)
195297
else:
196-
assert zero_point_domain == ZeroPointDomain.FLOAT
298+
assert zero_point_domain == ZeroPointDomain.FLOAT.name
197299
mid_point = (quant_max + quant_min + 1) / 2
198300
min_val = zero_point - scale * mid_point
199301
quant = (
@@ -216,7 +318,7 @@ def dequantize_affine(
216318
zero_point_domain: ZeroPointDomain = ZeroPointDomain.INT,
217319
*,
218320
output_dtype: torch.dtype = torch.float32,
219-
):
321+
) -> torch.Tensor:
220322
"""
221323
Args:
222324
input (torch.Tensor): quantized tensor, should match the dtype `dtype` argument
@@ -238,6 +340,34 @@ def dequantize_affine(
238340
Output:
239341
dequantized Tensor, with requested dtype or fp32
240342
"""
343+
return _dequantize_affine(
344+
input,
345+
block_size,
346+
scale,
347+
zero_point,
348+
input_dtype,
349+
quant_min,
350+
quant_max,
351+
zero_point_domain.name,
352+
output_dtype=output_dtype,
353+
)
354+
355+
356+
# @register_custom_op(quant_lib, 'dequantize_affine(Tensor input, int[] block_size, Tensor scale, Tensor zero_point, ScalarType input_dtype, int? quant_min=None, int? quant_max=None, str zero_point_domain="INT", ScalarType output_dtype=float) -> Tensor')
357+
@register_custom_op(quant_lib)
358+
def _dequantize_affine(
359+
input: torch.Tensor,
360+
block_size: List[int],
361+
scale: torch.Tensor,
362+
zero_point: Optional[torch.Tensor],
363+
input_dtype: torch.dtype,
364+
quant_min: Optional[int] = None,
365+
quant_max: Optional[int] = None,
366+
zero_point_domain: str = "INT",
367+
output_dtype: torch.dtype = torch.float32,
368+
) -> torch.Tensor:
369+
"""op definition that has compatible signatures with custom op library
370+
"""
241371

242372
# TODO: validations
243373
# TODO: validate scale/zero_point dimensions are compatible with block_size
@@ -255,16 +385,16 @@ def dequantize_affine(
255385
if zero_point is not None:
256386
zero_point = zero_point.view(shape_after_reduction)
257387

258-
if zero_point_domain == ZeroPointDomain.INT:
388+
if zero_point_domain == ZeroPointDomain.INT.name:
259389
# Force a copy to avoid input modification due
260390
# to upcoming in-place operations.
261391
dequant = input.to(torch.int32, copy=True)
262392
if zero_point is not None:
263-
dequant -= zero_point.to(torch.int32)
393+
dequant = dequant - zero_point.to(torch.int32)
264394
dequant = dequant.to(output_dtype)
265-
dequant *= scale
395+
dequant = dequant * scale
266396
else:
267-
assert zero_point_domain == ZeroPointDomain.FLOAT, f"Unexpected zero point domain: {zero_point_domain}"
397+
assert zero_point_domain == ZeroPointDomain.FLOAT.name, f"Unexpected zero point domain: {zero_point_domain}"
268398
mid_point = (quant_max + quant_min + 1) / 2
269399
# This should allocate new memory and avoid input modification
270400
dequant = input - mid_point
@@ -320,8 +450,39 @@ def choose_qparams_affine(
320450
Output:
321451
Tuple of scales and zero_points Tensor with requested dtype
322452
"""
453+
return _choose_qparams_affine(
454+
input,
455+
mapping_type.name,
456+
block_size,
457+
target_dtype,
458+
quant_min,
459+
quant_max,
460+
eps,
461+
scale_dtype,
462+
zero_point_dtype,
463+
preserve_zero,
464+
zero_point_domain.name
465+
)
466+
467+
# @register_custom_op(quant_lib, 'choose_qparams_affine(Tensor input, str mapping_type, int[] block_size, ScalarType target_dtype, int? quant_min=None, int? quant_max=None, float? eps=None, ScalarType? scale_dtype=None, ScalarType? zero_point_dtype=None, bool preserve_zero=True, str zero_point_domain="INT") -> (Tensor, Tensor)')
468+
@register_custom_op(quant_lib)
469+
def _choose_qparams_affine(
470+
input: torch.Tensor,
471+
mapping_type: str,
472+
block_size: List[int],
473+
target_dtype: torch.dtype,
474+
quant_min: Optional[int] = None,
475+
quant_max: Optional[int] = None,
476+
eps: Optional[float] = None,
477+
scale_dtype: Optional[torch.dtype] = None,
478+
zero_point_dtype: Optional[torch.dtype] = None,
479+
preserve_zero: bool = True,
480+
zero_point_domain: str = "INT",
481+
) -> Tuple[torch.Tensor, torch.Tensor]:
482+
"""op definition that has compatible signatures with custom op library
483+
"""
323484
quant_min, quant_max = _get_and_check_qmin_qmax(target_dtype, quant_min, quant_max)
324-
assert mapping_type in [MappingType.SYMMETRIC, MappingType.ASYMMETRIC], f"Unsupported mapping type: {mapping_type}"
485+
assert mapping_type in [MappingType.SYMMETRIC.name, MappingType.ASYMMETRIC.name], f"Unsupported mapping type: {mapping_type}"
325486

326487
if scale_dtype is None:
327488
scale_dtype = input.dtype
@@ -342,21 +503,22 @@ def choose_qparams_affine(
342503
min_val_neg = min_val
343504
max_val_pos = max_val
344505

345-
if mapping_type == MappingType.SYMMETRIC:
506+
if mapping_type == MappingType.SYMMETRIC.name:
346507
max_val_pos = torch.max(-min_val_neg, max_val_pos)
347508
scale = max_val_pos / (float(quant_max - quant_min) / 2)
348509
if not preserve_zero:
349510
raise ValueError("preserve_zero == False is not supported for symmetric quantization")
350-
if zero_point_domain != ZeroPointDomain.INT:
511+
if zero_point_domain != ZeroPointDomain.INT.name:
351512
raise ValueError("zero_point_domain != ZeroPointDomain.INT is not supported for symmetric quantization")
352513
zero_point = torch.full_like(scale, int((quant_max + quant_min + 1) / 2))
353514
else:
515+
assert mapping_type == MappingType.ASYMMETRIC.name
354516
scale = (max_val_pos - min_val_neg) / float(quant_max - quant_min)
355517
if preserve_zero:
356518
zero_point = quant_min - torch.round(min_val_neg / scale)
357519
zero_point = torch.clamp(zero_point, quant_min, quant_max)
358520
else:
359-
assert zero_point_domain == ZeroPointDomain.FLOAT, "if not preserve_zero, zero_point must be in FLOAT domain"
521+
assert zero_point_domain == ZeroPointDomain.FLOAT.name, "if not preserve_zero, zero_point must be in FLOAT domain"
360522
mid_point = (quant_max + quant_min + 1) / 2
361523
zero_point = min_val_neg + scale * mid_point
362524

0 commit comments

Comments
 (0)