44# This source code is licensed under the license found in the
55# LICENSE file in the root directory of this source tree.
66
7- from enum import Enum
7+ from enum import Enum , auto
88from typing import List , Optional , Tuple , Dict
99import torch
1010
1111from torchao .kernel .intmm import int_scaled_matmul
1212from torchao .kernel .intmm import safe_int_mm
13- from torchao .utils import TORCH_VERSION_AFTER_2_3
13+ from torchao .utils import (
14+ TORCH_VERSION_AFTER_2_3 ,
15+ TORCH_VERSION_AFTER_2_5 ,
16+ )
1417
1518
1619__all__ = [
@@ -34,17 +37,17 @@ class MappingType(Enum):
3437 based on this mapping
3538 e.g. scale = (10.2 - (-3.5)) / (7 - (-8))
3639 """
37- SYMMETRIC = 0
38- ASYMMETRIC = 1
40+ SYMMETRIC = auto ()
41+ ASYMMETRIC = auto ()
3942
4043class ZeroPointDomain (Enum ):
4144 """Enum that indicate whether zero_point is in integer domain or floating point domain
4245
4346 integer domain: quantized_val = (float_val / scale) (integer) + zero_point (integer)
4447 float domain: quantized_val = (float_val - (zero_point (float) - scale * mid_point)) / scale
4548 """
46- INT = 0
47- FLOAT = 1
49+ INT = auto ()
50+ FLOAT = auto ()
4851
4952"""
5053Map from dtype to the bound value of integers
@@ -69,6 +72,80 @@ class ZeroPointDomain(Enum):
6972 })
7073
7174
75+ # def register_custom_op(name: str):
76+ # from torch._inductor.decomposition import register_decomposition
77+
78+ # def decorator(fn):
79+ # if TORCH_VERSION_AFTER_2_5:
80+ # opdef = torch.library.custom_op(name, mutates_args=())(fn)
81+ # opdef.register_fake(fn)
82+ # register_decomposition([opdef._opoverload])(fn)
83+ # return opdef
84+ # else:
85+ # return fn
86+
87+ # return decorator
88+
89+ quant_lib = torch .library .Library ("quant" , "FRAGMENT" )
90+
91+ # def register_custom_op(lib, schema: str):
92+ # """This decorator is used to preserve some high level operators for torch.export.export
93+ # while still allow them to be decomposed for inductor path
94+
95+ # NOTE: This should be applied at the top, after all other decorators have been applied
96+ # """
97+ # from torch._inductor.decomposition import register_decomposition
98+
99+ # def decorator(fn):
100+ # if TORCH_VERSION_AFTER_2_5:
101+ # # TODO: change order
102+ # lib_namespace = lib.ns
103+ # op_name = schema.split("(")[0]
104+ # lib.define(schema)
105+ # lib.impl(op_name, fn, "CompositeImplicitAutograd")
106+ # op = getattr(getattr(torch.ops, lib_namespace), op_name)
107+ # register_decomposition([op])(fn)
108+ # return op
109+ # else:
110+ # return fn
111+
112+ # return decorator
113+
114+ def register_custom_op (lib ):
115+ """This decorator is used to preserve some high level operators for torch.export.export
116+ while still allow them to be decomposed for inductor path
117+
118+ requirement: make sure `fn.__name__[1:]` is the operator name you want to register
119+
120+ NOTE: This should be applied at the top, after all other decorators have been applied
121+ NOTE: We haven't tested the case when `fn` accepts tensor subclass instance as input,
122+ e.g. uint4 tensor subclass instance, and we'll probably need to figure out what would make
123+ sense for downstream system (like executorch) to accept as well
124+ """
125+ from torch ._inductor .decomposition import register_decomposition
126+
127+ def decorator (fn ):
128+ if TORCH_VERSION_AFTER_2_5 :
129+ from torch ._library .infer_schema import infer_schema
130+
131+ # assuming fn.__name__ starts with `_` and we want to take the rest
132+ # to be the name of the custom op
133+ schema = fn .__name__ [1 :] + infer_schema (fn )
134+ print ("schema:" , schema )
135+ # TODO: change order
136+ lib_namespace = lib .ns
137+ op_name = schema .split ("(" )[0 ]
138+ lib .define (schema )
139+ lib .impl (op_name , fn , "CompositeImplicitAutograd" )
140+ op = getattr (getattr (torch .ops , lib_namespace ), op_name )
141+ register_decomposition ([op ])(fn )
142+ return op
143+ else :
144+ return fn
145+
146+ return decorator
147+
148+
72149# TODO: decide on if we want to allow custom quant_min/quant_max here
73150def _get_and_check_qmin_qmax (dtype , quant_min , quant_max ):
74151 """Get quant_min and quant_max args based on dtype and also
@@ -140,7 +217,7 @@ def quantize_affine(
140217 quant_min : Optional [int ] = None ,
141218 quant_max : Optional [int ] = None ,
142219 zero_point_domain : ZeroPointDomain = ZeroPointDomain .INT ,
143- ):
220+ ) -> torch . Tensor :
144221 """
145222 Args:
146223 input (torch.Tensor): original float32, float16 or bfloat16 Tensor
@@ -174,6 +251,32 @@ def quantize_affine(
174251 Output:
175252 quantized tensor with requested dtype
176253 """
254+ return _quantize_affine (
255+ input ,
256+ block_size ,
257+ scale ,
258+ zero_point ,
259+ output_dtype ,
260+ quant_min ,
261+ quant_max ,
262+ zero_point_domain .name ,
263+ )
264+
265+
266+ # @register_custom_op(quant_lib, 'quantize_affine(Tensor input, int[] block_size, Tensor scale, Tensor? zero_point, ScalarType output_dtype, int? quant_min=None, int? quant_max=None, str zero_point_domain="INT") -> Tensor')
267+ @register_custom_op (quant_lib )
268+ def _quantize_affine (
269+ input : torch .Tensor ,
270+ block_size : List [int ],
271+ scale : torch .Tensor ,
272+ zero_point : Optional [torch .Tensor ],
273+ output_dtype : torch .dtype ,
274+ quant_min : Optional [int ] = None ,
275+ quant_max : Optional [int ] = None ,
276+ zero_point_domain : str = "INT" ,
277+ ) -> torch .Tensor :
278+ """op definition that has compatible signatures with custom op library
279+ """
177280 # TODO: validations
178281 # TODO: validate scale/zero_point dimensions are compatible with block_size
179282 assert input .dtype in [torch .float32 , torch .float16 , torch .bfloat16 ], f"Unsupported input dtype: { input .dtype } "
@@ -188,12 +291,12 @@ def quantize_affine(
188291 if zero_point is not None :
189292 zero_point = zero_point .view (shape_after_reduction )
190293
191- if zero_point_domain == ZeroPointDomain .INT :
294+ if zero_point_domain == ZeroPointDomain .INT . name :
192295 quant = torch .clamp (
193296 torch .round (input * (1.0 / scale )) + zero_point , quant_min , quant_max
194297 ).to (output_dtype )
195298 else :
196- assert zero_point_domain == ZeroPointDomain .FLOAT
299+ assert zero_point_domain == ZeroPointDomain .FLOAT . name
197300 mid_point = (quant_max + quant_min + 1 ) / 2
198301 min_val = zero_point - scale * mid_point
199302 quant = (
@@ -216,7 +319,7 @@ def dequantize_affine(
216319 zero_point_domain : ZeroPointDomain = ZeroPointDomain .INT ,
217320 * ,
218321 output_dtype : torch .dtype = torch .float32 ,
219- ):
322+ ) -> torch . Tensor :
220323 """
221324 Args:
222325 input (torch.Tensor): quantized tensor, should match the dtype `dtype` argument
@@ -238,6 +341,34 @@ def dequantize_affine(
238341 Output:
239342 dequantized Tensor, with requested dtype or fp32
240343 """
344+ return _dequantize_affine (
345+ input ,
346+ block_size ,
347+ scale ,
348+ zero_point ,
349+ input_dtype ,
350+ quant_min ,
351+ quant_max ,
352+ zero_point_domain .name ,
353+ output_dtype = output_dtype ,
354+ )
355+
356+
357+ # @register_custom_op(quant_lib, 'dequantize_affine(Tensor input, int[] block_size, Tensor scale, Tensor zero_point, ScalarType input_dtype, int? quant_min=None, int? quant_max=None, str zero_point_domain="INT", ScalarType output_dtype=float) -> Tensor')
358+ @register_custom_op (quant_lib )
359+ def _dequantize_affine (
360+ input : torch .Tensor ,
361+ block_size : List [int ],
362+ scale : torch .Tensor ,
363+ zero_point : Optional [torch .Tensor ],
364+ input_dtype : torch .dtype ,
365+ quant_min : Optional [int ] = None ,
366+ quant_max : Optional [int ] = None ,
367+ zero_point_domain : str = "INT" ,
368+ output_dtype : torch .dtype = torch .float32 ,
369+ ) -> torch .Tensor :
370+ """op definition that has compatible signatures with custom op library
371+ """
241372
242373 # TODO: validations
243374 # TODO: validate scale/zero_point dimensions are compatible with block_size
@@ -255,16 +386,16 @@ def dequantize_affine(
255386 if zero_point is not None :
256387 zero_point = zero_point .view (shape_after_reduction )
257388
258- if zero_point_domain == ZeroPointDomain .INT :
389+ if zero_point_domain == ZeroPointDomain .INT . name :
259390 # Force a copy to avoid input modification due
260391 # to upcoming in-place operations.
261392 dequant = input .to (torch .int32 , copy = True )
262393 if zero_point is not None :
263- dequant -= zero_point .to (torch .int32 )
394+ dequant = dequant - zero_point .to (torch .int32 )
264395 dequant = dequant .to (output_dtype )
265- dequant *= scale
396+ dequant = dequant * scale
266397 else :
267- assert zero_point_domain == ZeroPointDomain .FLOAT , f"Unexpected zero point domain: { zero_point_domain } "
398+ assert zero_point_domain == ZeroPointDomain .FLOAT . name , f"Unexpected zero point domain: { zero_point_domain } "
268399 mid_point = (quant_max + quant_min + 1 ) / 2
269400 # This should allocate new memory and avoid input modification
270401 dequant = input - mid_point
@@ -320,8 +451,39 @@ def choose_qparams_affine(
320451 Output:
321452 Tuple of scales and zero_points Tensor with requested dtype
322453 """
454+ return _choose_qparams_affine (
455+ input ,
456+ mapping_type .name ,
457+ block_size ,
458+ target_dtype ,
459+ quant_min ,
460+ quant_max ,
461+ eps ,
462+ scale_dtype ,
463+ zero_point_dtype ,
464+ preserve_zero ,
465+ zero_point_domain .name
466+ )
467+
468+ # @register_custom_op(quant_lib, 'choose_qparams_affine(Tensor input, str mapping_type, int[] block_size, ScalarType target_dtype, int? quant_min=None, int? quant_max=None, float? eps=None, ScalarType? scale_dtype=None, ScalarType? zero_point_dtype=None, bool preserve_zero=True, str zero_point_domain="INT") -> (Tensor, Tensor)')
469+ @register_custom_op (quant_lib )
470+ def _choose_qparams_affine (
471+ input : torch .Tensor ,
472+ mapping_type : str ,
473+ block_size : List [int ],
474+ target_dtype : torch .dtype ,
475+ quant_min : Optional [int ] = None ,
476+ quant_max : Optional [int ] = None ,
477+ eps : Optional [float ] = None ,
478+ scale_dtype : Optional [torch .dtype ] = None ,
479+ zero_point_dtype : Optional [torch .dtype ] = None ,
480+ preserve_zero : bool = True ,
481+ zero_point_domain : str = "INT" ,
482+ ) -> Tuple [torch .Tensor , torch .Tensor ]:
483+ """op definition that has compatible signatures with custom op library
484+ """
323485 quant_min , quant_max = _get_and_check_qmin_qmax (target_dtype , quant_min , quant_max )
324- assert mapping_type in [MappingType .SYMMETRIC , MappingType .ASYMMETRIC ], f"Unsupported mapping type: { mapping_type } "
486+ assert mapping_type in [MappingType .SYMMETRIC . name , MappingType .ASYMMETRIC . name ], f"Unsupported mapping type: { mapping_type } "
325487
326488 if scale_dtype is None :
327489 scale_dtype = input .dtype
@@ -342,21 +504,22 @@ def choose_qparams_affine(
342504 min_val_neg = min_val
343505 max_val_pos = max_val
344506
345- if mapping_type == MappingType .SYMMETRIC :
507+ if mapping_type == MappingType .SYMMETRIC . name :
346508 max_val_pos = torch .max (- min_val_neg , max_val_pos )
347509 scale = max_val_pos / (float (quant_max - quant_min ) / 2 )
348510 if not preserve_zero :
349511 raise ValueError ("preserve_zero == False is not supported for symmetric quantization" )
350- if zero_point_domain != ZeroPointDomain .INT :
512+ if zero_point_domain != ZeroPointDomain .INT . name :
351513 raise ValueError ("zero_point_domain != ZeroPointDomain.INT is not supported for symmetric quantization" )
352514 zero_point = torch .full_like (scale , int ((quant_max + quant_min + 1 ) / 2 ))
353515 else :
516+ assert mapping_type == MappingType .ASYMMETRIC .name
354517 scale = (max_val_pos - min_val_neg ) / float (quant_max - quant_min )
355518 if preserve_zero :
356519 zero_point = quant_min - torch .round (min_val_neg / scale )
357520 zero_point = torch .clamp (zero_point , quant_min , quant_max )
358521 else :
359- assert zero_point_domain == ZeroPointDomain .FLOAT , "if not preserve_zero, zero_point must be in FLOAT domain"
522+ assert zero_point_domain == ZeroPointDomain .FLOAT . name , "if not preserve_zero, zero_point must be in FLOAT domain"
360523 mid_point = (quant_max + quant_min + 1 ) / 2
361524 zero_point = min_val_neg + scale * mid_point
362525
0 commit comments