using System;
using System.Collections;
using System.Collections.Generic;

namespace Advanced.Algorithms.DataStructures;

/// <summary>
///     A suffix tree implementation using a trie.
/// </summary>
public class SuffixTree<T> : IEnumerable<T[]>
{
    private readonly HashSet<T[]> items = new(new ArrayComparer<T>());
    private readonly Trie<T> trie;

    public SuffixTree()
    {
        trie = new Trie<T>();
        Count = 0;
    }

    public int Count { private set; get; }

    IEnumerator IEnumerable.GetEnumerator()
    {
        return GetEnumerator();
    }

    public IEnumerator<T[]> GetEnumerator()
    {
        return items.GetEnumerator();
    }

    /// <summary>
    ///     Insert a new entry to this suffix tree.
    ///     Time complexity: O(m^2) where m is the length of entry array.
    /// </summary>
    public void Insert(T[] entry)
    {
        if (entry == null) throw new ArgumentException();

        if (items.Contains(entry)) throw new Exception("Item exists.");

        for (var i = 0; i < entry.Length; i++)
        {
            var suffix = new T[entry.Length - i];
            Array.Copy(entry, i, suffix, 0, entry.Length - i);

            trie.Insert(suffix);
        }

        items.Add(entry);

        Count++;
    }

    /// <summary>
    ///     Deletes an existing entry from this suffix tree.
    ///     Time complexity: O(m^2) where m is the length of entry array.
    /// </summary>
    public void Delete(T[] entry)
    {
        if (entry == null) throw new ArgumentException();

        if (!items.Contains(entry)) throw new Exception("Item does'nt exist.");

        for (var i = 0; i < entry.Length; i++)
        {
            var suffix = new T[entry.Length - i];
            Array.Copy(entry, i, suffix, 0, entry.Length - i);

            trie.Delete(suffix);
        }

        items.Remove(entry);

        Count--;
    }

    /// <summary>
    ///     Returns true if the given entry pattern is in this suffix tree.
    ///     Time complexity: O(e) where e is the length of the given entry.
    /// </summary>
    public bool Contains(T[] pattern)
    {
        return trie.ContainsPrefix(pattern);
    }

    /// <summary>
    ///     Returns all sub-entries that starts with this search pattern.
    ///     Time complexity: O(rm) where r is the number of results and m is the average length of each entry.
    /// </summary>
    public List<T[]> StartsWith(T[] pattern)
    {
        return trie.StartsWith(pattern);
    }
}