Skip to content

Commit 7c78850

Browse files
Update QuickNet documentation. (#663)
* Update QuickNet documentation. * Remove h5 link and update formatting. * Update RPi4 link and specify clock frequency * Update [email protected] benchmarks with the latest code (TF2.8) and XNNpack enabled Co-authored-by: Cedric Nugteren <[email protected]>
1 parent 1cb7b1f commit 7c78850

File tree

1 file changed

+14
-14
lines changed

1 file changed

+14
-14
lines changed

README.md

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -45,32 +45,32 @@ advantage of multi-core modern desktop and mobile CPUs.
4545

4646
The table below presents **single-threaded** performance of Larq Compute Engine on
4747
different versions of a novel BNN model called QuickNet (trained on ImageNet dataset, released on [Larq Zoo](https://docs.larq.dev/zoo/))
48-
on a [Pixel 1 phone (2016)](https://support.google.com/pixelphone/answer/7158570?hl=en-GB)
49-
and a Raspberry Pi 4 Model B ([BCM2711](https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2711/README.md)) board:
48+
on a Raspberry Pi 4 Model B at 1.5GHz ([BCM2711](https://www.raspberrypi.com/documentation/computers/processors.html#bcm2711)) board, a [Pixel 1 Android phone (2016)](https://support.google.com/pixelphone/answer/7158570?hl=en-GB), and a [Mac Mini with M1 ARM CPU](https://www.apple.com/uk/mac-mini/):
5049

51-
| Model | Top-1 Accuracy | RPi 4 B, ms (1 thread) | Pixel 1, ms (1 thread) |
52-
| -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :------------: | :--------------------: | :--------------------: |
53-
| [QuickNet](https://docs.larq.dev/zoo/api/sota/#quicknet) ([.h5](https://github.com/larq/zoo/releases/download/quicknet-v0.2.0/quicknet_weights.h5)) | 58.6 % | 31.4 | 16.8 |
54-
| [QuickNet-Large](https://docs.larq.dev/zoo/api/sota/#quicknetlarge) ([.h5](https://github.com/larq/zoo/releases/download/quicknet_large-v0.2.0/quicknet_large_weights.h5)) | 62.7 % | 48.7 | 25.5 |
55-
| [QuickNet-XL](https://docs.larq.dev/zoo/api/sota/#quicknetxl) ([.h5](https://github.com/larq/zoo/releases/download/quicknet_xl-v0.1.0/quicknet_xl_weights.h5)) | 67.0 % | 82.9 | 44.2 |
50+
| Model | Top-1 Accuracy | RPi 4B 1.5GHz, 1 thread (ms) | Pixel 1, 1 thread (ms) | Mac Mini M1, 1 thread (ms) |
51+
|--------------------------------------------------------------------|----------------|------------------------------|------------------------|----------------------------|
52+
| [QuickNetSmall](https://docs.larq.dev/zoo/api/sota/#quicknetsmall) | 59.4% | 27.7 | 16.8 | 4.0 |
53+
| [QuickNet](https://docs.larq.dev/zoo/api/sota/#quicknet) | 63.3% | 45.0 | 25.5 | 5.8 |
54+
| [QuickNetLarge](https://docs.larq.dev/zoo/api/sota/#quicknetlarge) | 66.9% | 77.0 | 44.2 | 9.9 |
5655

5756
For reference, [dabnn](https://github.com/JDAI-CV/dabnn) (the other main BNN library) reports an inference time of 61.3 ms for [Bi-RealNet](https://docs.larq.dev/zoo/api/literature/#birealnet) (56.4% accuracy) on the Pixel 1 phone,
5857
while LCE achieves an inference time of 41.6 ms for Bi-RealNet on the same device.
5958
They furthermore present a modified version, BiRealNet-Stem, which achieves the same accuracy of 56.4% in 43.2 ms.
6059

6160
The following table presents **multi-threaded** performance of Larq Compute Engine on
62-
a Pixel 1 phone and a Raspberry Pi 4 Model B ([BCM2711](https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2711/README.md))
61+
a Pixel 1 phone and a Raspberry Pi 4 Model B at 1.5GHz ([BCM2711](https://www.raspberrypi.com/documentation/computers/processors.html#bcm2711))
6362
board:
6463

65-
| Model | Top-1 Accuracy | RPi 4 B, ms (4 threads) | Pixel 1, ms (4 threads) |
66-
| -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :------------: | :---------------------: | :---------------------: |
67-
| [QuickNet](https://docs.larq.dev/zoo/api/sota/#quicknet) ([.h5](https://github.com/larq/zoo/releases/download/quicknet-v0.2.0/quicknet_weights.h5)) | 58.6 % | 16.1 | 8.9 |
68-
| [QuickNet-Large](https://docs.larq.dev/zoo/api/sota/#quicknetlarge) ([.h5](https://github.com/larq/zoo/releases/download/quicknet_large-v0.2.0/quicknet_large_weights.h5)) | 62.7 % | 24.7 | 12.6 |
69-
| [QuickNet-XL](https://docs.larq.dev/zoo/api/sota/#quicknetxl) ([.h5](https://github.com/larq/zoo/releases/download/quicknet_xl-v0.1.0/quicknet_xl_weights.h5)) | 67.0 % | 37.9 | 22.8 |
64+
| Model | Top-1 Accuracy | RPi 4B 1.5GHz, 4 threads (ms) | Pixel 1, 4 threads (ms) | Mac Mini M1, 4 threads (ms) |
65+
|--------------------------------------------------------------------|----------------|-------------------------------|-------------------------|-----------------------------|
66+
| [QuickNetSmall](https://docs.larq.dev/zoo/api/sota/#quicknetsmall) | 59.4% | 12.1 | 8.9 | 1.8 |
67+
| [QuickNet](https://docs.larq.dev/zoo/api/sota/#quicknet) | 63.3% | 20.8 | 12.6 | 2.5 |
68+
| [QuickNetLarge](https://docs.larq.dev/zoo/api/sota/#quicknetlarge) | 66.9% | 31.7 | 22.8 | 3.9 |
7069

71-
Benchmarked on August 21st, 2020 with LCE custom
70+
Benchmarked on 2021-06-11 (Pixel 1), 2021-06-13 (Mac Mini M1), and 2022-04-20 (RPi 4B) with LCE custom
7271
[TFLite Model Benchmark Tool](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/tools/benchmark)
7372
(see [here](https://github.com/larq/compute-engine/tree/main/larq_compute_engine/tflite/benchmark))
73+
with XNNPack enabled
7474
and BNN models with randomized inputs.
7575

7676
## Getting started

0 commit comments

Comments
 (0)