|
| 1 | +# This configuration tested on 4 GPUs (V100) with 32GB GPU |
| 2 | +# memory. It takes around 2 weeks to finish the training |
| 3 | +# but 100k iters model should generate reasonable results. |
| 4 | +########################################################### |
| 5 | +# FEATURE EXTRACTION SETTING # |
| 6 | +########################################################### |
| 7 | + |
| 8 | +n_mels: 80 |
| 9 | +fs: 22050 # sr |
| 10 | +n_fft: 1024 # FFT size (samples). |
| 11 | +n_shift: 256 # Hop size (samples). 12.5ms |
| 12 | +win_length: null # Window length (samples). 50ms |
| 13 | + # If set to null, it will be the same as fft_size. |
| 14 | +window: "hann" # Window function. |
| 15 | +fmin: 0 # minimum frequency for Mel basis |
| 16 | +fmax: null # maximum frequency for Mel basis |
| 17 | +f0min: 80 # Minimum f0 for pitch extraction. |
| 18 | +f0max: 400 # Maximum f0 for pitch extraction. |
| 19 | + |
| 20 | + |
| 21 | +########################################################## |
| 22 | +# TTS MODEL SETTING # |
| 23 | +########################################################## |
| 24 | +model: |
| 25 | + # generator related |
| 26 | + generator_type: jets_generator |
| 27 | + generator_params: |
| 28 | + adim: 256 # attention dimension |
| 29 | + aheads: 2 # number of attention heads |
| 30 | + elayers: 4 # number of encoder layers |
| 31 | + eunits: 1024 # number of encoder ff units |
| 32 | + dlayers: 4 # number of decoder layers |
| 33 | + dunits: 1024 # number of decoder ff units |
| 34 | + positionwise_layer_type: conv1d # type of position-wise layer |
| 35 | + positionwise_conv_kernel_size: 3 # kernel size of position wise conv layer |
| 36 | + duration_predictor_layers: 2 # number of layers of duration predictor |
| 37 | + duration_predictor_chans: 256 # number of channels of duration predictor |
| 38 | + duration_predictor_kernel_size: 3 # filter size of duration predictor |
| 39 | + use_masking: True # whether to apply masking for padded part in loss calculation |
| 40 | + encoder_normalize_before: True # whether to perform layer normalization before the input |
| 41 | + decoder_normalize_before: True # whether to perform layer normalization before the input |
| 42 | + encoder_type: transformer # encoder type |
| 43 | + decoder_type: transformer # decoder type |
| 44 | + conformer_rel_pos_type: latest # relative positional encoding type |
| 45 | + conformer_pos_enc_layer_type: rel_pos # conformer positional encoding type |
| 46 | + conformer_self_attn_layer_type: rel_selfattn # conformer self-attention type |
| 47 | + conformer_activation_type: swish # conformer activation type |
| 48 | + use_macaron_style_in_conformer: true # whether to use macaron style in conformer |
| 49 | + use_cnn_in_conformer: true # whether to use CNN in conformer |
| 50 | + conformer_enc_kernel_size: 7 # kernel size in CNN module of conformer-based encoder |
| 51 | + conformer_dec_kernel_size: 31 # kernel size in CNN module of conformer-based decoder |
| 52 | + init_type: xavier_uniform # initialization type |
| 53 | + init_enc_alpha: 1.0 # initial value of alpha for encoder |
| 54 | + init_dec_alpha: 1.0 # initial value of alpha for decoder |
| 55 | + transformer_enc_dropout_rate: 0.2 # dropout rate for transformer encoder layer |
| 56 | + transformer_enc_positional_dropout_rate: 0.2 # dropout rate for transformer encoder positional encoding |
| 57 | + transformer_enc_attn_dropout_rate: 0.2 # dropout rate for transformer encoder attention layer |
| 58 | + transformer_dec_dropout_rate: 0.2 # dropout rate for transformer decoder layer |
| 59 | + transformer_dec_positional_dropout_rate: 0.2 # dropout rate for transformer decoder positional encoding |
| 60 | + transformer_dec_attn_dropout_rate: 0.2 # dropout rate for transformer decoder attention layer |
| 61 | + pitch_predictor_layers: 5 # number of conv layers in pitch predictor |
| 62 | + pitch_predictor_chans: 256 # number of channels of conv layers in pitch predictor |
| 63 | + pitch_predictor_kernel_size: 5 # kernel size of conv leyers in pitch predictor |
| 64 | + pitch_predictor_dropout: 0.5 # dropout rate in pitch predictor |
| 65 | + pitch_embed_kernel_size: 1 # kernel size of conv embedding layer for pitch |
| 66 | + pitch_embed_dropout: 0.0 # dropout rate after conv embedding layer for pitch |
| 67 | + stop_gradient_from_pitch_predictor: true # whether to stop the gradient from pitch predictor to encoder |
| 68 | + energy_predictor_layers: 2 # number of conv layers in energy predictor |
| 69 | + energy_predictor_chans: 256 # number of channels of conv layers in energy predictor |
| 70 | + energy_predictor_kernel_size: 3 # kernel size of conv leyers in energy predictor |
| 71 | + energy_predictor_dropout: 0.5 # dropout rate in energy predictor |
| 72 | + energy_embed_kernel_size: 1 # kernel size of conv embedding layer for energy |
| 73 | + energy_embed_dropout: 0.0 # dropout rate after conv embedding layer for energy |
| 74 | + stop_gradient_from_energy_predictor: false # whether to stop the gradient from energy predictor to encoder |
| 75 | + generator_out_channels: 1 |
| 76 | + generator_channels: 512 |
| 77 | + generator_global_channels: -1 |
| 78 | + generator_kernel_size: 7 |
| 79 | + generator_upsample_scales: [8, 8, 2, 2] |
| 80 | + generator_upsample_kernel_sizes: [16, 16, 4, 4] |
| 81 | + generator_resblock_kernel_sizes: [3, 7, 11] |
| 82 | + generator_resblock_dilations: [[1, 3, 5], [1, 3, 5], [1, 3, 5]] |
| 83 | + generator_use_additional_convs: true |
| 84 | + generator_bias: true |
| 85 | + generator_nonlinear_activation: "leakyrelu" |
| 86 | + generator_nonlinear_activation_params: |
| 87 | + negative_slope: 0.1 |
| 88 | + generator_use_weight_norm: true |
| 89 | + segment_size: 64 # segment size for random windowed discriminator |
| 90 | + |
| 91 | + # discriminator related |
| 92 | + discriminator_type: hifigan_multi_scale_multi_period_discriminator |
| 93 | + discriminator_params: |
| 94 | + scales: 1 |
| 95 | + scale_downsample_pooling: "AvgPool1D" |
| 96 | + scale_downsample_pooling_params: |
| 97 | + kernel_size: 4 |
| 98 | + stride: 2 |
| 99 | + padding: 2 |
| 100 | + scale_discriminator_params: |
| 101 | + in_channels: 1 |
| 102 | + out_channels: 1 |
| 103 | + kernel_sizes: [15, 41, 5, 3] |
| 104 | + channels: 128 |
| 105 | + max_downsample_channels: 1024 |
| 106 | + max_groups: 16 |
| 107 | + bias: True |
| 108 | + downsample_scales: [2, 2, 4, 4, 1] |
| 109 | + nonlinear_activation: "leakyrelu" |
| 110 | + nonlinear_activation_params: |
| 111 | + negative_slope: 0.1 |
| 112 | + use_weight_norm: True |
| 113 | + use_spectral_norm: False |
| 114 | + follow_official_norm: False |
| 115 | + periods: [2, 3, 5, 7, 11] |
| 116 | + period_discriminator_params: |
| 117 | + in_channels: 1 |
| 118 | + out_channels: 1 |
| 119 | + kernel_sizes: [5, 3] |
| 120 | + channels: 32 |
| 121 | + downsample_scales: [3, 3, 3, 3, 1] |
| 122 | + max_downsample_channels: 1024 |
| 123 | + bias: True |
| 124 | + nonlinear_activation: "leakyrelu" |
| 125 | + nonlinear_activation_params: |
| 126 | + negative_slope: 0.1 |
| 127 | + use_weight_norm: True |
| 128 | + use_spectral_norm: False |
| 129 | + # others |
| 130 | + sampling_rate: 22050 # needed in the inference for saving wav |
| 131 | + cache_generator_outputs: True # whether to cache generator outputs in the training |
| 132 | +use_alignment_module: False # whether to use alignment module |
| 133 | + |
| 134 | +########################################################### |
| 135 | +# LOSS SETTING # |
| 136 | +########################################################### |
| 137 | +# loss function related |
| 138 | +generator_adv_loss_params: |
| 139 | + average_by_discriminators: False # whether to average loss value by #discriminators |
| 140 | + loss_type: mse # loss type, "mse" or "hinge" |
| 141 | +discriminator_adv_loss_params: |
| 142 | + average_by_discriminators: False # whether to average loss value by #discriminators |
| 143 | + loss_type: mse # loss type, "mse" or "hinge" |
| 144 | +feat_match_loss_params: |
| 145 | + average_by_discriminators: False # whether to average loss value by #discriminators |
| 146 | + average_by_layers: False # whether to average loss value by #layers of each discriminator |
| 147 | + include_final_outputs: True # whether to include final outputs for loss calculation |
| 148 | +mel_loss_params: |
| 149 | + fs: 22050 # must be the same as the training data |
| 150 | + fft_size: 1024 # fft points |
| 151 | + hop_size: 256 # hop size |
| 152 | + win_length: null # window length |
| 153 | + window: hann # window type |
| 154 | + num_mels: 80 # number of Mel basis |
| 155 | + fmin: 0 # minimum frequency for Mel basis |
| 156 | + fmax: null # maximum frequency for Mel basis |
| 157 | + log_base: null # null represent natural log |
| 158 | + |
| 159 | +########################################################### |
| 160 | +# ADVERSARIAL LOSS SETTING # |
| 161 | +########################################################### |
| 162 | +lambda_adv: 1.0 # loss scaling coefficient for adversarial loss |
| 163 | +lambda_mel: 45.0 # loss scaling coefficient for Mel loss |
| 164 | +lambda_feat_match: 2.0 # loss scaling coefficient for feat match loss |
| 165 | +lambda_var: 1.0 # loss scaling coefficient for duration loss |
| 166 | +lambda_align: 2.0 # loss scaling coefficient for KL divergence loss |
| 167 | +# others |
| 168 | +sampling_rate: 22050 # needed in the inference for saving wav |
| 169 | +cache_generator_outputs: True # whether to cache generator outputs in the training |
| 170 | + |
| 171 | + |
| 172 | +# extra module for additional inputs |
| 173 | +pitch_extract: dio # pitch extractor type |
| 174 | +pitch_extract_conf: |
| 175 | + reduction_factor: 1 |
| 176 | + use_token_averaged_f0: false |
| 177 | +pitch_normalize: global_mvn # normalizer for the pitch feature |
| 178 | +energy_extract: energy # energy extractor type |
| 179 | +energy_extract_conf: |
| 180 | + reduction_factor: 1 |
| 181 | + use_token_averaged_energy: false |
| 182 | +energy_normalize: global_mvn # normalizer for the energy feature |
| 183 | + |
| 184 | + |
| 185 | +########################################################### |
| 186 | +# DATA LOADER SETTING # |
| 187 | +########################################################### |
| 188 | +batch_size: 32 # Batch size. |
| 189 | +num_workers: 4 # Number of workers in DataLoader. |
| 190 | + |
| 191 | +########################################################## |
| 192 | +# OPTIMIZER & SCHEDULER SETTING # |
| 193 | +########################################################## |
| 194 | +# optimizer setting for generator |
| 195 | +generator_optimizer_params: |
| 196 | + beta1: 0.8 |
| 197 | + beta2: 0.99 |
| 198 | + epsilon: 1.0e-9 |
| 199 | + weight_decay: 0.0 |
| 200 | +generator_scheduler: exponential_decay |
| 201 | +generator_scheduler_params: |
| 202 | + learning_rate: 2.0e-4 |
| 203 | + gamma: 0.999875 |
| 204 | + |
| 205 | +# optimizer setting for discriminator |
| 206 | +discriminator_optimizer_params: |
| 207 | + beta1: 0.8 |
| 208 | + beta2: 0.99 |
| 209 | + epsilon: 1.0e-9 |
| 210 | + weight_decay: 0.0 |
| 211 | +discriminator_scheduler: exponential_decay |
| 212 | +discriminator_scheduler_params: |
| 213 | + learning_rate: 2.0e-4 |
| 214 | + gamma: 0.999875 |
| 215 | +generator_first: True # whether to start updating generator first |
| 216 | + |
| 217 | +########################################################## |
| 218 | +# OTHER TRAINING SETTING # |
| 219 | +########################################################## |
| 220 | +num_snapshots: 10 # max number of snapshots to keep while training |
| 221 | +train_max_steps: 350000 # Number of training steps. == total_iters / ngpus, total_iters = 1000000 |
| 222 | +save_interval_steps: 1000 # Interval steps to save checkpoint. |
| 223 | +eval_interval_steps: 250 # Interval steps to evaluate the network. |
| 224 | +seed: 777 # random seed number |
0 commit comments