|
| 1 | +# Copyright (c) Microsoft Corporation. |
| 2 | +# Licensed under the MIT License. |
| 3 | +from __future__ import annotations |
| 4 | + |
| 5 | +from typing import Sequence, Union |
| 6 | + |
| 7 | +import onnxscript.ir as ir |
| 8 | +from onnxscript.rewriter import _fusion_utils, pattern |
| 9 | + |
| 10 | +Dim = Union[int, ir.SymbolicDim] |
| 11 | + |
| 12 | + |
| 13 | +# TODO: Maybe add this check to utilities |
| 14 | + |
| 15 | + |
| 16 | +class AttentionFusion(pattern.RewriteRuleClassBase): |
| 17 | + def __init__(self, name, *, has_input_bias: bool, has_past: bool = False): |
| 18 | + super().__init__(name) |
| 19 | + # TODO: We can just pass bias to MultiHeadAttention |
| 20 | + # and let it handle the bias addition, once that pattern is added to MHA |
| 21 | + self._has_input_bias = has_input_bias |
| 22 | + self._has_past = has_past |
| 23 | + |
| 24 | + def pattern( |
| 25 | + self, |
| 26 | + op, |
| 27 | + input, |
| 28 | + qkv_weight, |
| 29 | + qkv_bias, |
| 30 | + # mask_index, |
| 31 | + past, |
| 32 | + # attention_bias, |
| 33 | + num_heads, |
| 34 | + # scale, |
| 35 | + ): |
| 36 | + projected = op.MatMul(input, qkv_weight) |
| 37 | + # Add bias if present |
| 38 | + if self._has_input_bias: |
| 39 | + projected = op.Add(projected, qkv_bias) |
| 40 | + |
| 41 | + # Slice packed Matmul QKV into Q, K, and V |
| 42 | + # Q, K, and V are of shape (B, S, D) |
| 43 | + query_BSD = op.Slice( |
| 44 | + projected, |
| 45 | + _allow_other_inputs=True, |
| 46 | + _outputs=["query_mm_sliced"], |
| 47 | + ) |
| 48 | + key_BSD = op.Slice( |
| 49 | + projected, |
| 50 | + _allow_other_inputs=True, |
| 51 | + _outputs=["key_mm_sliced"], |
| 52 | + ) |
| 53 | + value_BSD = op.Slice( |
| 54 | + projected, |
| 55 | + _allow_other_inputs=True, |
| 56 | + _outputs=["value_mm_sliced"], |
| 57 | + ) |
| 58 | + |
| 59 | + # TODO: Add other attributes |
| 60 | + |
| 61 | + if self._has_past: |
| 62 | + # Split past into past_key and past_value |
| 63 | + # past_key and past_value are of shape (B, H, S, D/H) |
| 64 | + past_key = op.Slice( |
| 65 | + past, |
| 66 | + _allow_other_inputs=True, |
| 67 | + _outputs=["past_key_sliced"], |
| 68 | + ) |
| 69 | + past_key = op.Squeeze(past_key, [0]) |
| 70 | + past_value = op.Slice( |
| 71 | + past, |
| 72 | + _allow_other_inputs=True, |
| 73 | + _outputs=["past_value_sliced"], |
| 74 | + ) |
| 75 | + past_value = op.Squeeze(past_value, [0]) |
| 76 | + |
| 77 | + attention, present_key, present_value = op.MultiHeadAttention( |
| 78 | + query_BSD, |
| 79 | + key_BSD, |
| 80 | + value_BSD, |
| 81 | + None, # bias |
| 82 | + None, # key_padding_mask |
| 83 | + None, # attention_bias, |
| 84 | + past_key, |
| 85 | + past_value, |
| 86 | + num_heads=num_heads, |
| 87 | + # scale=scale, |
| 88 | + _domain="com.microsoft", |
| 89 | + _outputs=3, |
| 90 | + ) |
| 91 | + # Concat present_key and present_value to form present |
| 92 | + present_key = op.Unsqueeze(present_key, [0]) |
| 93 | + present_value = op.Unsqueeze(present_value, [0]) |
| 94 | + present = op.Concat(present_key, present_value, axis=0) |
| 95 | + # Return present output first as it captures the complete pattern graph |
| 96 | + return present, attention |
| 97 | + else: |
| 98 | + attention = op.MultiHeadAttention( |
| 99 | + query_BSD, |
| 100 | + key_BSD, |
| 101 | + value_BSD, |
| 102 | + # bias |
| 103 | + # key_padding_mask |
| 104 | + # attention_bias, |
| 105 | + # past_key |
| 106 | + # past_value |
| 107 | + num_heads=num_heads, |
| 108 | + # scale=scale, |
| 109 | + _domain="com.microsoft", |
| 110 | + _outputs=1, |
| 111 | + ) |
| 112 | + return attention |
| 113 | + |
| 114 | + def check( |
| 115 | + self, |
| 116 | + op, |
| 117 | + input, |
| 118 | + qkv_weight, |
| 119 | + qkv_bias, |
| 120 | + query_mm_sliced, |
| 121 | + key_mm_sliced, |
| 122 | + value_mm_sliced, |
| 123 | + **_, |
| 124 | + ): |
| 125 | + check_result = pattern.MatchResult() |
| 126 | + self.bindings: dict[str, Dim] = {} |
| 127 | + |
| 128 | + def no_match(val: ir.Value, dims: Sequence[str]) -> bool: |
| 129 | + return not _fusion_utils._check_shape(self.bindings, val, dims) |
| 130 | + |
| 131 | + if no_match(input, ["B", "S", "D"]): |
| 132 | + return check_result.fail( |
| 133 | + f"Shape mismatch: {input} does not match expected dimensions ['B', 'S', 'D']", |
| 134 | + input, |
| 135 | + ) |
| 136 | + if no_match(qkv_weight, ["D", "Dh"]): |
| 137 | + return check_result.fail( |
| 138 | + f"Shape mismatch: {qkv_weight} does not match expected dimensions ['D', 'Dh']", |
| 139 | + qkv_weight, |
| 140 | + ) |
| 141 | + if no_match(qkv_bias, ["Dh"]): |
| 142 | + return check_result.fail( |
| 143 | + f"Shape mismatch: {qkv_bias} does not match expected dimensions ['Dh']", |
| 144 | + qkv_bias, |
| 145 | + ) |
| 146 | + if no_match(query_mm_sliced, ["B", "S", "Dh_q"]): |
| 147 | + return check_result.fail( |
| 148 | + f"Shape mismatch: {query_mm_sliced} does not match expected dimensions ['B', 'S', 'Dh_q']", |
| 149 | + query_mm_sliced, |
| 150 | + ) |
| 151 | + if no_match(key_mm_sliced, ["B", "S", "Dh_k"]): |
| 152 | + return check_result.fail( |
| 153 | + f"Shape mismatch: {key_mm_sliced} does not match expected dimensions ['B', 'S', 'Dh_k']", |
| 154 | + key_mm_sliced, |
| 155 | + ) |
| 156 | + if no_match(value_mm_sliced, ["B", "S", "Dh_v"]): |
| 157 | + return check_result.fail( |
| 158 | + f"Shape mismatch: {value_mm_sliced} does not match expected dimensions ['B', 'S', 'Dh_v']", |
| 159 | + value_mm_sliced, |
| 160 | + ) |
| 161 | + |
| 162 | + # Ensure Dh = Dh_q + Dh_k + Dh_v |
| 163 | + Dh = self.bindings.get("Dh") |
| 164 | + Dh_q = self.bindings.get("Dh_q") |
| 165 | + Dh_k = self.bindings.get("Dh_k") |
| 166 | + Dh_v = self.bindings.get("Dh_v") |
| 167 | + |
| 168 | + if ( |
| 169 | + not isinstance(Dh, int) |
| 170 | + or not isinstance(Dh_q, int) |
| 171 | + or not isinstance(Dh_k, int) |
| 172 | + or not isinstance(Dh_v, int) |
| 173 | + ): |
| 174 | + return check_result.fail( |
| 175 | + "Could not determine the hidden sizes of query, key, and value.", |
| 176 | + ) |
| 177 | + |
| 178 | + if Dh != Dh_q + Dh_k + Dh_v: # type: ignore[operator] |
| 179 | + return check_result.fail( |
| 180 | + f"Hidden size of query, key and value do not add up to hidden size: {Dh} != {Dh_q} + {Dh_k} + {Dh_v}", |
| 181 | + ) |
| 182 | + |
| 183 | + # TODO: Add mask check once mask is added to the pattern |
| 184 | + return check_result |
| 185 | + |
| 186 | + def rewrite( |
| 187 | + self, |
| 188 | + op, |
| 189 | + input, |
| 190 | + qkv_weight, |
| 191 | + qkv_bias, |
| 192 | + # mask_index, |
| 193 | + past, |
| 194 | + # attention_bias, |
| 195 | + num_heads, |
| 196 | + # scale, |
| 197 | + **_, |
| 198 | + ): |
| 199 | + # Use bindings to get the values of Dh_q, Dh_k, and Dh_v |
| 200 | + # and construct qkv_hidden_sizes |
| 201 | + Dh_q = self.bindings.get("Dh_q") |
| 202 | + Dh_k = self.bindings.get("Dh_k") |
| 203 | + Dh_v = self.bindings.get("Dh_v") |
| 204 | + qkv_hidden_sizes = [Dh_q, Dh_k, Dh_v] |
| 205 | + |
| 206 | + if self._has_past: |
| 207 | + attention, present = op.Attention( |
| 208 | + input, |
| 209 | + qkv_weight, |
| 210 | + qkv_bias, |
| 211 | + None, # mask_index |
| 212 | + past, |
| 213 | + # attention_bias, |
| 214 | + # past_sequence_length |
| 215 | + num_heads=num_heads, |
| 216 | + qkv_hidden_sizes=qkv_hidden_sizes, |
| 217 | + # scale=scale, |
| 218 | + _domain="com.microsoft", |
| 219 | + _outputs=2, |
| 220 | + ) |
| 221 | + # Use same output ordering as in pattern |
| 222 | + return present, attention |
| 223 | + else: |
| 224 | + return op.Attention( |
| 225 | + input, |
| 226 | + qkv_weight, |
| 227 | + qkv_bias, |
| 228 | + # mask_index |
| 229 | + # past |
| 230 | + # attention_bias, |
| 231 | + # past_sequence_length |
| 232 | + num_heads=num_heads, |
| 233 | + qkv_hidden_sizes=qkv_hidden_sizes, |
| 234 | + # scale=scale, |
| 235 | + _domain="com.microsoft", |
| 236 | + _outputs=1, |
| 237 | + ) |
| 238 | + |
| 239 | + |
| 240 | +attention = AttentionFusion.rule( |
| 241 | + "attention", |
| 242 | + has_input_bias=False, |
| 243 | + has_past=False, |
| 244 | +) |
| 245 | +attention_with_bias = AttentionFusion.rule( |
| 246 | + "attention_with_bias", |
| 247 | + has_input_bias=True, |
| 248 | + has_past=False, |
| 249 | +) |
| 250 | +attention_with_past = AttentionFusion.rule( |
| 251 | + "attention_with_past", |
| 252 | + has_input_bias=False, |
| 253 | + has_past=True, |
| 254 | +) |
| 255 | +attention_with_bias_and_past = AttentionFusion.rule( |
| 256 | + "attention_with_bias_and_past", |
| 257 | + has_input_bias=True, |
| 258 | + has_past=True, |
| 259 | +) |
| 260 | + |
| 261 | +attention_rules = pattern.RewriteRuleSet( |
| 262 | + [ |
| 263 | + attention, |
| 264 | + attention_with_bias, |
| 265 | + attention_with_past, |
| 266 | + attention_with_bias_and_past, |
| 267 | + ] |
| 268 | +) |
| 269 | + |
| 270 | + |
| 271 | +def fuse_attention(model: ir.Model, *, debug: bool = False) -> int: |
| 272 | + count = attention_rules.apply_to_model(model) |
| 273 | + if debug and count == 0: |
| 274 | + tracer = pattern.MatchingTracer() |
| 275 | + attention_rules.apply_to_model(model, tracer=tracer) |
| 276 | + tracer.report() |
| 277 | + return count |
0 commit comments