Skip to content

Commit e35a179

Browse files
Remove proto2text | chore! (#1193)
Remove proto2text because it is simply an alias of `onnx.printer.to_text`. --------- Co-authored-by: Ti-Tai Wang <[email protected]>
1 parent 82d2063 commit e35a179

19 files changed

+30
-44
lines changed

.lintrunner.toml

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,6 @@ include_patterns = [
88
'**/*.pyi',
99
]
1010
exclude_patterns = [
11-
'docs/**',
1211
'onnxscript/tests/models/**',
1312
]
1413
command = [

README.md

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -65,9 +65,8 @@ pytest onnxscript
6565
import onnx
6666

6767
# We use ONNX opset 15 to define the function below.
68-
from onnxscript import FLOAT
68+
from onnxscript import FLOAT, script
6969
from onnxscript import opset15 as op
70-
from onnxscript import script
7170

7271

7372
# We use the script decorator to indicate that

docs/examples/01_plot_selu.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -32,6 +32,6 @@ def Selu(X, alpha: float, gamma: float):
3232

3333
# %%
3434
# Let's see what the translated function looks like:
35-
from onnxscript import proto2text # noqa: E402
35+
import onnx # noqa: E402
3636

37-
print(proto2text(onnx_fun))
37+
print(onnx.printer.to_text(onnx_fun))

docs/examples/02_plot_square_loss.py

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -14,9 +14,8 @@
1414
import onnx
1515
from onnxruntime import InferenceSession
1616

17-
from onnxscript import FLOAT
17+
from onnxscript import FLOAT, script
1818
from onnxscript import opset15 as op
19-
from onnxscript import proto2text, script
2019

2120

2221
@script()
@@ -32,7 +31,7 @@ def square_loss(X: FLOAT["N", 1], Y: FLOAT["N", 1]) -> FLOAT[1, 1]: # noqa: F82
3231

3332
# %%
3433
# Let's see what the generated model looks like.
35-
print(proto2text(model))
34+
print(onnx.printer.to_text(model))
3635

3736
# %%
3837
# We can run shape-inference and type-check the model using the standard ONNX API.

docs/examples/03_export_lib.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -8,9 +8,8 @@
88
**This is preliminary. Proto extensions are required to fully support LibProto.**
99
"""
1010

11-
from onnxscript import export_onnx_lib
11+
from onnxscript import export_onnx_lib, script
1212
from onnxscript import opset15 as op
13-
from onnxscript import script
1413
from onnxscript.values import Opset
1514

1615
# %%

docs/examples/04_plot_eager_mode_evaluation.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -12,9 +12,8 @@
1212
"""
1313
import numpy as np
1414

15-
from onnxscript import FLOAT
15+
from onnxscript import FLOAT, script
1616
from onnxscript import opset15 as op
17-
from onnxscript import script
1817

1918

2019
@script()

docs/examples/05_plot_model_props.py

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -15,9 +15,10 @@
1515
# %%
1616
# First, we define the implementation of a square-loss function in onnxscript.
1717

18-
from onnxscript import FLOAT
18+
import onnx
19+
20+
from onnxscript import FLOAT, script
1921
from onnxscript import opset15 as op
20-
from onnxscript import proto2text, script
2122

2223

2324
@script(ir_version=7, producer_name="OnnxScript", producer_version="0.1")
@@ -29,4 +30,4 @@ def square_loss(X: FLOAT["N"], Y: FLOAT["N"]) -> FLOAT[1]: # noqa: F821
2930
# %%
3031
# Let's see what the generated model looks like.
3132
model = square_loss.to_model_proto()
32-
print(proto2text(model))
33+
print(onnx.printer.to_text(model))

docs/examples/06_plot_model_local_funs.py

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -14,9 +14,10 @@
1414
# %%
1515
# First, let us define an ONNXScript function that calls other ONNXScript functions.
1616

17-
from onnxscript import FLOAT
17+
import onnx
18+
19+
from onnxscript import FLOAT, script
1820
from onnxscript import opset15 as op
19-
from onnxscript import proto2text, script
2021
from onnxscript.values import Opset
2122

2223
# A dummy opset used for model-local functions
@@ -43,17 +44,17 @@ def l2norm(x: FLOAT["N"], y: FLOAT["N"]) -> FLOAT[1]: # noqa: F821
4344
# Let's see what the generated model looks like by default:
4445

4546
model = l2norm.to_model_proto()
46-
print(proto2text(model))
47+
print(onnx.printer.to_text(model))
4748

4849
# %%
4950
# Let's now explicitly specify which functions to include.
5051
# First, generate a model with no model-local functions:
5152

5253
model = l2norm.to_model_proto(functions=[])
53-
print(proto2text(model))
54+
print(onnx.printer.to_text(model))
5455

5556
# %%
5657
# Now, generate a model with one model-local function:
5758

5859
model = l2norm.to_model_proto(functions=[sum])
59-
print(proto2text(model))
60+
print(onnx.printer.to_text(model))

docs/tutorial/examples/forloop.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@
66
def sumprod(x, N):
77
sum = op.Identity(x)
88
prod = op.Identity(x)
9-
for i in range(N):
9+
for _ in range(N):
1010
sum = sum + x
1111
prod = prod * x
1212
return sum, prod

docs/tutorial/examples/forwhileloop.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@
66
def sumprod_break(x, N):
77
sum = op.Identity(x)
88
prod = op.Identity(x)
9-
for i in range(N):
9+
for _ in range(N):
1010
sum = sum + x
1111
prod = prod * x
1212
cond = op.ReduceSum(prod) > 1e7

0 commit comments

Comments
 (0)