@@ -1282,4 +1282,102 @@ impl f128 {
12821282 }
12831283 self
12841284 }
1285+
1286+ /// Computes the absolute value of `self`.
1287+ ///
1288+ /// This function always returns the precise result.
1289+ ///
1290+ /// # Examples
1291+ ///
1292+ /// ```
1293+ /// #![feature(f128)]
1294+ /// # #[cfg(reliable_f128)] {
1295+ ///
1296+ /// let x = 3.5_f128;
1297+ /// let y = -3.5_f128;
1298+ ///
1299+ /// assert_eq!(x.abs(), x);
1300+ /// assert_eq!(y.abs(), -y);
1301+ ///
1302+ /// assert!(f128::NAN.abs().is_nan());
1303+ /// # }
1304+ /// ```
1305+ #[ inline]
1306+ #[ rustc_allow_incoherent_impl]
1307+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1308+ #[ rustc_const_unstable( feature = "const_float_methods" , issue = "130843" ) ]
1309+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1310+ pub const fn abs ( self ) -> Self {
1311+ // FIXME(f16_f128): replace with `intrinsics::fabsf128` when available
1312+ // We don't do this now because LLVM has lowering bugs for f128 math.
1313+ Self :: from_bits ( self . to_bits ( ) & !( 1 << 127 ) )
1314+ }
1315+
1316+ /// Returns a number that represents the sign of `self`.
1317+ ///
1318+ /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1319+ /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1320+ /// - NaN if the number is NaN
1321+ ///
1322+ /// # Examples
1323+ ///
1324+ /// ```
1325+ /// #![feature(f128)]
1326+ /// # #[cfg(reliable_f128_math)] {
1327+ ///
1328+ /// let f = 3.5_f128;
1329+ ///
1330+ /// assert_eq!(f.signum(), 1.0);
1331+ /// assert_eq!(f128::NEG_INFINITY.signum(), -1.0);
1332+ ///
1333+ /// assert!(f128::NAN.signum().is_nan());
1334+ /// # }
1335+ /// ```
1336+ #[ inline]
1337+ #[ rustc_allow_incoherent_impl]
1338+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1339+ #[ rustc_const_unstable( feature = "const_float_methods" , issue = "130843" ) ]
1340+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1341+ pub const fn signum ( self ) -> f128 {
1342+ if self . is_nan ( ) { Self :: NAN } else { 1.0_f128 . copysign ( self ) }
1343+ }
1344+
1345+ /// Returns a number composed of the magnitude of `self` and the sign of
1346+ /// `sign`.
1347+ ///
1348+ /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1349+ /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1350+ /// returned.
1351+ ///
1352+ /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1353+ /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1354+ /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1355+ /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1356+ /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1357+ /// info.
1358+ ///
1359+ /// # Examples
1360+ ///
1361+ /// ```
1362+ /// #![feature(f128)]
1363+ /// # #[cfg(reliable_f128_math)] {
1364+ ///
1365+ /// let f = 3.5_f128;
1366+ ///
1367+ /// assert_eq!(f.copysign(0.42), 3.5_f128);
1368+ /// assert_eq!(f.copysign(-0.42), -3.5_f128);
1369+ /// assert_eq!((-f).copysign(0.42), 3.5_f128);
1370+ /// assert_eq!((-f).copysign(-0.42), -3.5_f128);
1371+ ///
1372+ /// assert!(f128::NAN.copysign(1.0).is_nan());
1373+ /// # }
1374+ /// ```
1375+ #[ inline]
1376+ #[ rustc_allow_incoherent_impl]
1377+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1378+ #[ rustc_const_unstable( feature = "const_float_methods" , issue = "130843" ) ]
1379+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1380+ pub const fn copysign ( self , sign : f128 ) -> f128 {
1381+ unsafe { intrinsics:: copysignf128 ( self , sign) }
1382+ }
12851383}
0 commit comments