|
| 1 | +# LanceDB |
| 2 | + |
| 3 | +LanceDB is an embedded vector database for AI applications. It is open source and distributed with an Apache-2.0 license. |
| 4 | + |
| 5 | +LanceDB datasets are persisted to disk and can be shared in Python. |
| 6 | + |
| 7 | +## Setup |
| 8 | + |
| 9 | +```bash |
| 10 | +npm install -S vectordb |
| 11 | +``` |
| 12 | + |
| 13 | +## Usage |
| 14 | + |
| 15 | +### Create a new index from texts |
| 16 | + |
| 17 | +```python |
| 18 | +import os |
| 19 | +import tempfile |
| 20 | +from langchain.vectorstores import LanceDB |
| 21 | +from langchain.embeddings.openai import OpenAIEmbeddings |
| 22 | +from vectordb import connect |
| 23 | + |
| 24 | + |
| 25 | +async def run(): |
| 26 | + dir = tempfile.mkdtemp(prefix="lancedb-") |
| 27 | + db = await connect(dir) |
| 28 | + table = await db.create_table("vectors", [{"vector": [0] * 1536, "text": "sample", "id": 1}]) |
| 29 | + |
| 30 | + vector_store = await LanceDB.from_texts( |
| 31 | + ["Hello world", "Bye bye", "hello nice world"], |
| 32 | + [{"id": 2}, {"id": 1}, {"id": 3}], |
| 33 | + OpenAIEmbeddings(), |
| 34 | + table=table, |
| 35 | + ) |
| 36 | + |
| 37 | + result_one = await vector_store.similarity_search("hello world", 1) |
| 38 | + print(result_one) |
| 39 | + # [ Document(page_content='hello nice world', metadata={'id': 3}) ] |
| 40 | + |
| 41 | + |
| 42 | +# Run the function |
| 43 | +import asyncio |
| 44 | + |
| 45 | +asyncio.run(run()) |
| 46 | +``` |
| 47 | + |
| 48 | +API Reference: |
| 49 | + |
| 50 | +- `LanceDB` from `@langchain/community/vectorstores/lancedb` |
| 51 | +- `OpenAIEmbeddings` from `@langchain/openai` |
| 52 | + |
| 53 | +### Create a new index from a loader |
| 54 | + |
| 55 | +```python |
| 56 | +import os |
| 57 | +import tempfile |
| 58 | +from langchain.vectorstores import LanceDB |
| 59 | +from langchain.embeddings.openai import OpenAIEmbeddings |
| 60 | +from langchain.document_loaders.fs import TextLoader |
| 61 | +from vectordb import connect |
| 62 | + |
| 63 | +# Create docs with a loader |
| 64 | +loader = TextLoader("src/document_loaders/example_data/example.txt") |
| 65 | +docs = loader.load() |
| 66 | + |
| 67 | + |
| 68 | +async def run(): |
| 69 | + dir = tempfile.mkdtemp(prefix="lancedb-") |
| 70 | + db = await connect(dir) |
| 71 | + table = await db.create_table("vectors", [{"vector": [0] * 1536, "text": "sample", "source": "a"}]) |
| 72 | + |
| 73 | + vector_store = await LanceDB.from_documents(docs, OpenAIEmbeddings(), table=table) |
| 74 | + |
| 75 | + result_one = await vector_store.similarity_search("hello world", 1) |
| 76 | + print(result_one) |
| 77 | + # [ |
| 78 | + # Document(page_content='Foo\nBar\nBaz\n\n', metadata={'source': 'src/document_loaders/example_data/example.txt'}) |
| 79 | + # ] |
| 80 | + |
| 81 | + |
| 82 | +# Run the function |
| 83 | +import asyncio |
| 84 | + |
| 85 | +asyncio.run(run()) |
| 86 | +``` |
| 87 | + |
| 88 | +API Reference: |
| 89 | + |
| 90 | +- `LanceDB` from `@langchain/community/vectorstores/lancedb` |
| 91 | +- `OpenAIEmbeddings` from `@langchain/openai` |
| 92 | +- `TextLoader` from `langchain/document_loaders/fs/text` |
| 93 | + |
| 94 | +### Open an existing dataset |
| 95 | + |
| 96 | +```python |
| 97 | +import os |
| 98 | +import tempfile |
| 99 | +from langchain.vectorstores import LanceDB |
| 100 | +from langchain.embeddings.openai import OpenAIEmbeddings |
| 101 | +from vectordb import connect |
| 102 | + |
| 103 | + |
| 104 | +async def run(): |
| 105 | + uri = await create_test_db() |
| 106 | + db = await connect(uri) |
| 107 | + table = await db.open_table("vectors") |
| 108 | + |
| 109 | + vector_store = LanceDB(OpenAIEmbeddings(), table=table) |
| 110 | + |
| 111 | + result_one = await vector_store.similarity_search("hello world", 1) |
| 112 | + print(result_one) |
| 113 | + # [ Document(page_content='Hello world', metadata={'id': 1}) ] |
| 114 | + |
| 115 | + |
| 116 | +async def create_test_db(): |
| 117 | + dir = tempfile.mkdtemp(prefix="lancedb-") |
| 118 | + db = await connect(dir) |
| 119 | + await db.create_table( |
| 120 | + "vectors", |
| 121 | + [ |
| 122 | + {"vector": [0] * 1536, "text": "Hello world", "id": 1}, |
| 123 | + {"vector": [0] * 1536, "text": "Bye bye", "id": 2}, |
| 124 | + {"vector": [0] * 1536, "text": "hello nice world", "id": 3}, |
| 125 | + ], |
| 126 | + ) |
| 127 | + return dir |
| 128 | + |
| 129 | + |
| 130 | +# Run the function |
| 131 | +import asyncio |
| 132 | + |
| 133 | +asyncio.run(run()) |
| 134 | +``` |
| 135 | + |
| 136 | +API Reference: |
| 137 | + |
| 138 | +- `LanceDB` from `@langchain/community/vectorstores/lancedb` |
| 139 | +- `OpenAIEmbeddings` from `@langchain/openai` |
0 commit comments