Skip to content

Commit 82ffa41

Browse files
pre-commit-ci[bot]ZePan110
authored andcommitted
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
1 parent 68d2f2e commit 82ffa41

File tree

17 files changed

+35
-20
lines changed

17 files changed

+35
-20
lines changed

comps/dataprep/src/integrations/elasticsearch.py

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -10,6 +10,7 @@
1010
from fastapi import Body, File, Form, HTTPException, UploadFile
1111
from langchain.text_splitter import HTMLHeaderTextSplitter, RecursiveCharacterTextSplitter
1212
from langchain_community.embeddings import HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings
13+
from langchain_huggingface import HuggingFaceEmbeddings
1314
from langchain_core.documents import Document
1415
from langchain_elasticsearch import ElasticsearchStore
1516

@@ -78,7 +79,7 @@ def create_index(self) -> None:
7879
if not self.es_client.indices.exists(index=INDEX_NAME):
7980
self.es_client.indices.create(index=INDEX_NAME)
8081

81-
def get_embedder(self) -> Union[HuggingFaceInferenceAPIEmbeddings, HuggingFaceBgeEmbeddings]:
82+
def get_embedder(self) -> Union[HuggingFaceInferenceAPIEmbeddings, HuggingFaceEmbeddings]:
8283
"""Obtain required Embedder."""
8384
if TEI_EMBEDDING_ENDPOINT:
8485
if not HUGGINGFACEHUB_API_TOKEN:
@@ -99,10 +100,10 @@ def get_embedder(self) -> Union[HuggingFaceInferenceAPIEmbeddings, HuggingFaceBg
99100
)
100101
return embedder
101102
else:
102-
return HuggingFaceBgeEmbeddings(model_name=EMBED_MODEL)
103+
return HuggingFaceEmbeddings(model_name=EMBED_MODEL)
103104

104105
def get_elastic_store(
105-
self, embedder: Union[HuggingFaceInferenceAPIEmbeddings, HuggingFaceBgeEmbeddings]
106+
self, embedder: Union[HuggingFaceInferenceAPIEmbeddings, HuggingFaceEmbeddings]
106107
) -> ElasticsearchStore:
107108
"""Get Elasticsearch vector store."""
108109
return ElasticsearchStore(index_name=INDEX_NAME, embedding=embedder, es_connection=self.es_client)

comps/dataprep/src/integrations/milvus.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,6 +12,7 @@
1212
from langchain.text_splitter import RecursiveCharacterTextSplitter
1313
from langchain_community.embeddings import HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings, OpenAIEmbeddings
1414
from langchain_core.documents import Document
15+
from langchain_huggingface import HuggingFaceEmbeddings
1516
from langchain_milvus.vectorstores import Milvus
1617
from langchain_text_splitters import HTMLHeaderTextSplitter
1718

@@ -213,7 +214,7 @@ def _initialize_embedder(self):
213214
# create embeddings using local embedding model
214215
if logflag:
215216
logger.info(f"[ milvus embedding ] LOCAL_EMBEDDING_MODEL:{LOCAL_EMBEDDING_MODEL}")
216-
embeddings = HuggingFaceBgeEmbeddings(model_name=LOCAL_EMBEDDING_MODEL)
217+
embeddings = HuggingFaceEmbeddings(model_name=LOCAL_EMBEDDING_MODEL)
217218
return embeddings
218219

219220
def check_health(self) -> bool:

comps/dataprep/src/integrations/opensearch.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,7 @@
99
from langchain.text_splitter import RecursiveCharacterTextSplitter
1010
from langchain_community.embeddings import HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings
1111
from langchain_community.vectorstores import OpenSearchVectorSearch
12+
from langchain_huggingface import HuggingFaceEmbeddings
1213
from langchain_text_splitters import HTMLHeaderTextSplitter
1314
from opensearchpy import OpenSearch
1415

@@ -99,7 +100,7 @@ def __init__(self, name: str, description: str, config: dict = None):
99100
api_key=HUGGINGFACEHUB_API_TOKEN, model_name=model_id, api_url=TEI_EMBEDDING_ENDPOINT
100101
)
101102
else:
102-
self.embeddings = HuggingFaceBgeEmbeddings(model_name=Config.EMBED_MODEL)
103+
self.embeddings = HuggingFaceEmbeddings(model_name=Config.EMBED_MODEL)
103104

104105
# OpenSearch client setup
105106
self.auth = ("admin", Config.OPENSEARCH_INITIAL_ADMIN_PASSWORD)

comps/dataprep/src/integrations/pgvect.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,6 +12,7 @@
1212
from langchain.text_splitter import RecursiveCharacterTextSplitter
1313
from langchain_community.embeddings import HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings
1414
from langchain_community.vectorstores import PGVector
15+
from langchain_huggingface import HuggingFaceEmbeddings
1516

1617
from comps import CustomLogger, DocPath, OpeaComponent, OpeaComponentRegistry, ServiceType
1718
from comps.dataprep.src.utils import (
@@ -73,7 +74,7 @@ def __init__(self, name: str, description: str, config: dict = None):
7374
)
7475
else:
7576
# create embeddings using local embedding model
76-
self.embedder = HuggingFaceBgeEmbeddings(model_name=EMBED_MODEL)
77+
self.embedder = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
7778

7879
# Perform health check
7980
health_status = self.check_health()

comps/dataprep/src/integrations/pipecone.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,6 +10,7 @@
1010
from langchain.text_splitter import RecursiveCharacterTextSplitter
1111
from langchain_community.embeddings import HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings
1212
from langchain_pinecone import PineconeVectorStore
13+
from langchain_huggingface import HuggingFaceEmbeddings
1314
from langchain_text_splitters import HTMLHeaderTextSplitter
1415
from pinecone import Pinecone, ServerlessSpec
1516

@@ -72,7 +73,7 @@ def __init__(self, name: str, description: str, config: dict = None):
7273
)
7374
else:
7475
# create embeddings using local embedding model
75-
self.embedder = HuggingFaceBgeEmbeddings(model_name=EMBED_MODEL)
76+
self.embedder = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
7677
self.pc = Pinecone(api_key=PINECONE_API_KEY)
7778

7879
# Perform health check

comps/dataprep/src/integrations/qdrant.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,7 @@
99
from langchain.text_splitter import RecursiveCharacterTextSplitter
1010
from langchain_community.embeddings import HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings
1111
from langchain_community.vectorstores import Qdrant
12+
from langchain_huggingface import HuggingFaceEmbeddings
1213
from langchain_text_splitters import HTMLHeaderTextSplitter
1314
from qdrant_client import QdrantClient
1415

@@ -70,7 +71,7 @@ def __init__(self, name: str, description: str, config: dict = None):
7071
)
7172
else:
7273
# create embeddings using local embedding model
73-
self.embedder = HuggingFaceBgeEmbeddings(model_name=EMBED_MODEL)
74+
self.embedder = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
7475

7576
# Perform health check
7677
health_status = self.check_health()

comps/dataprep/src/integrations/redis.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -13,8 +13,8 @@
1313
from fastapi import Body, File, Form, HTTPException, UploadFile
1414
from langchain.text_splitter import RecursiveCharacterTextSplitter
1515
from langchain_community.embeddings import HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings
16-
from langchain_huggingface import HuggingFaceEmbeddings
1716
from langchain_community.vectorstores import Redis
17+
from langchain_huggingface import HuggingFaceEmbeddings
1818
from langchain_text_splitters import HTMLHeaderTextSplitter
1919
from redis import asyncio as aioredis
2020
from redis.commands.search.field import TextField

comps/dataprep/src/integrations/utils/redis_finance_utils.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,7 @@
99
from fastapi import HTTPException
1010
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
1111
from langchain_core.documents import Document
12+
from langchain_huggingface import HuggingFaceEmbeddings
1213
from langchain_huggingface import HuggingFaceEndpointEmbeddings
1314
from langchain_redis import RedisConfig, RedisVectorStore
1415
from openai import OpenAI
@@ -47,7 +48,7 @@ def get_embedder():
4748
embedder = HuggingFaceEndpointEmbeddings(model=TEI_EMBEDDING_ENDPOINT)
4849
else:
4950
# create embeddings using local embedding model
50-
embedder = HuggingFaceBgeEmbeddings(model_name=EMBED_MODEL)
51+
embedder = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
5152
return embedder
5253

5354

comps/dataprep/src/integrations/vdms.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,7 @@
88
from fastapi import Body, File, Form, HTTPException, UploadFile
99
from langchain.text_splitter import RecursiveCharacterTextSplitter
1010
from langchain_community.embeddings import HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings
11+
from langchain_huggingface import HuggingFaceEmbeddings
1112
from langchain_community.vectorstores.vdms import VDMS, VDMS_Client
1213
from langchain_text_splitters import HTMLHeaderTextSplitter
1314

@@ -83,7 +84,7 @@ def __init__(self, name: str, description: str, config: dict = None):
8384
)
8485
else:
8586
# create embeddings using local embedding model
86-
self.embedder = HuggingFaceBgeEmbeddings(model_name=EMBED_MODEL)
87+
self.embedder = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
8788

8889
# Perform health check
8990
health_status = self.check_health()

comps/retrievers/src/integrations/elasticsearch.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,7 @@
88
from fastapi import HTTPException
99
from langchain_community.embeddings import HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings
1010
from langchain_elasticsearch import ElasticsearchStore
11+
from langchain_huggingface import HuggingFaceEmbeddings
1112

1213
from comps import CustomLogger, EmbedDoc, OpeaComponent, OpeaComponentRegistry, ServiceType
1314

@@ -61,7 +62,7 @@ def _initialize_embedder(self):
6162
# create embeddings using local embedding model
6263
if logflag:
6364
logger.info(f"[ init embedder ] LOCAL_EMBEDDING_MODEL:{EMBED_MODEL}")
64-
embeddings = HuggingFaceBgeEmbeddings(model_name=EMBED_MODEL)
65+
embeddings = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
6566
return embeddings
6667

6768
def _initialize_client(self) -> Elasticsearch:

0 commit comments

Comments
 (0)