|
| 1 | +# Build Mega Service of ChatQnA on AIPC |
| 2 | + |
| 3 | +This document outlines the deployment process for a ChatQnA application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on AIPC. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as `embedding`, `retriever`, `rerank`, and `llm`. |
| 4 | + |
| 5 | +## 🚀 Build Docker Images |
| 6 | + |
| 7 | +First of all, you need to build Docker Images locally and install the python package of it. |
| 8 | + |
| 9 | +```bash |
| 10 | +git clone https://github.com/opea-project/GenAIComps.git |
| 11 | +cd GenAIComps |
| 12 | +``` |
| 13 | + |
| 14 | +### 1. Build Embedding Image |
| 15 | + |
| 16 | +```bash |
| 17 | +docker build --no-cache -t opea/embedding-tei:latest -f comps/embeddings/langchain/docker/Dockerfile . |
| 18 | +``` |
| 19 | + |
| 20 | +### 2. Build Retriever Image |
| 21 | + |
| 22 | +```bash |
| 23 | +docker build --no-cache -t opea/retriever-redis:latest -f comps/retrievers/langchain/redis/docker/Dockerfile . |
| 24 | +``` |
| 25 | + |
| 26 | +### 3. Build Rerank Image |
| 27 | + |
| 28 | +```bash |
| 29 | +docker build --no-cache -t opea/reranking-tei:latest -f comps/reranks/langchain/docker/Dockerfile . |
| 30 | +``` |
| 31 | + |
| 32 | +### 4. Build LLM Image |
| 33 | + |
| 34 | +We use [Ollama](https://ollama.com/) as our LLM service for AIPC. Please pre-download Ollama on your PC. |
| 35 | + |
| 36 | +```bash |
| 37 | +docker build --no-cache -t opea/llm-ollama:latest -f comps/llms/text-generation/ollama/Dockerfile . |
| 38 | +``` |
| 39 | + |
| 40 | +### 5. Build Dataprep Image |
| 41 | + |
| 42 | +```bash |
| 43 | +docker build --no-cache -t opea/dataprep-redis:latest -f comps/dataprep/redis/langchain/docker/Dockerfile . |
| 44 | +cd .. |
| 45 | +``` |
| 46 | + |
| 47 | +### 6. Build MegaService Docker Image |
| 48 | + |
| 49 | +To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `chatqna.py` Python script. Build MegaService Docker image via below command: |
| 50 | + |
| 51 | +```bash |
| 52 | +git clone https://github.com/opea-project/GenAIExamples.git |
| 53 | +cd GenAIExamples/ChatQnA/docker |
| 54 | +docker build --no-cache -t opea/chatqna:latest -f Dockerfile . |
| 55 | +cd ../../.. |
| 56 | +``` |
| 57 | + |
| 58 | +### 7. Build UI Docker Image |
| 59 | + |
| 60 | +Build frontend Docker image via below command: |
| 61 | + |
| 62 | +```bash |
| 63 | +cd GenAIExamples/ChatQnA/docker/ui/ |
| 64 | +docker build --no-cache -t opea/chatqna-ui:latest -f ./docker/Dockerfile . |
| 65 | +cd ../../../.. |
| 66 | +``` |
| 67 | + |
| 68 | +Then run the command `docker images`, you will have the following 7 Docker Images: |
| 69 | + |
| 70 | +1. `opea/dataprep-redis:latest` |
| 71 | +2. `opea/embedding-tei:latest` |
| 72 | +3. `opea/retriever-redis:latest` |
| 73 | +4. `opea/reranking-tei:latest` |
| 74 | +5. `opea/llm-ollama:latest` |
| 75 | +6. `opea/chatqna:latest` |
| 76 | +7. `opea/chatqna-ui:latest` |
| 77 | + |
| 78 | +## 🚀 Start Microservices |
| 79 | + |
| 80 | +### Setup Environment Variables |
| 81 | + |
| 82 | +Since the `docker_compose.yaml` will consume some environment variables, you need to setup them in advance as below. |
| 83 | + |
| 84 | +**Export the value of the public IP address of your AIPC to the `host_ip` environment variable** |
| 85 | + |
| 86 | +> Change the External_Public_IP below with the actual IPV4 value |
| 87 | +
|
| 88 | +``` |
| 89 | +export host_ip="External_Public_IP" |
| 90 | +``` |
| 91 | + |
| 92 | +For Linux users, please run `hostname -I | awk '{print $1}'`. For Windows users, please run `ipconfig | findstr /i "IPv4"` to get the external public ip. |
| 93 | + |
| 94 | +**Export the value of your Huggingface API token to the `your_hf_api_token` environment variable** |
| 95 | + |
| 96 | +> Change the Your_Huggingface_API_Token below with tyour actual Huggingface API Token value |
| 97 | +
|
| 98 | +``` |
| 99 | +export your_hf_api_token="Your_Huggingface_API_Token" |
| 100 | +``` |
| 101 | + |
| 102 | +**Append the value of the public IP address to the no_proxy list** |
| 103 | + |
| 104 | +``` |
| 105 | +export your_no_proxy=${your_no_proxy},"External_Public_IP" |
| 106 | +``` |
| 107 | + |
| 108 | +```bash |
| 109 | +export no_proxy=${your_no_proxy} |
| 110 | +export http_proxy=${your_http_proxy} |
| 111 | +export https_proxy=${your_http_proxy} |
| 112 | +export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5" |
| 113 | +export RERANK_MODEL_ID="BAAI/bge-reranker-base" |
| 114 | +export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:6006" |
| 115 | +export TEI_RERANKING_ENDPOINT="http://${host_ip}:8808" |
| 116 | +export REDIS_URL="redis://${host_ip}:6379" |
| 117 | +export INDEX_NAME="rag-redis" |
| 118 | +export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token} |
| 119 | +export MEGA_SERVICE_HOST_IP=${host_ip} |
| 120 | +export EMBEDDING_SERVICE_HOST_IP=${host_ip} |
| 121 | +export RETRIEVER_SERVICE_HOST_IP=${host_ip} |
| 122 | +export RERANK_SERVICE_HOST_IP=${host_ip} |
| 123 | +export LLM_SERVICE_HOST_IP=${host_ip} |
| 124 | +export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/chatqna" |
| 125 | +export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/dataprep" |
| 126 | + |
| 127 | +export OLLAMA_ENDPOINT=http://${host_ip}:11434 |
| 128 | +# On Windows PC, please use host.docker.internal instead of ${host_ip} |
| 129 | +#export OLLAMA_ENDPOINT=http://host.docker.internal:11434 |
| 130 | +``` |
| 131 | + |
| 132 | +Note: Please replace with `host_ip` with you external IP address, do not use localhost. |
| 133 | + |
| 134 | +### Start all the services Docker Containers |
| 135 | + |
| 136 | +> Before running the docker compose command, you need to be in the folder that has the docker compose yaml file |
| 137 | +
|
| 138 | +```bash |
| 139 | +cd GenAIExamples/ChatQnA/docker/aipc/ |
| 140 | +docker compose -f docker_compose.yaml up -d |
| 141 | + |
| 142 | +# let ollama service runs |
| 143 | +ollama run llama3 |
| 144 | +``` |
| 145 | + |
| 146 | +### Validate Microservices |
| 147 | + |
| 148 | +1. TEI Embedding Service |
| 149 | + |
| 150 | +```bash |
| 151 | +curl ${host_ip}:6006/embed \ |
| 152 | + -X POST \ |
| 153 | + -d '{"inputs":"What is Deep Learning?"}' \ |
| 154 | + -H 'Content-Type: application/json' |
| 155 | +``` |
| 156 | + |
| 157 | +2. Embedding Microservice |
| 158 | + |
| 159 | +```bash |
| 160 | +curl http://${host_ip}:6000/v1/embeddings\ |
| 161 | + -X POST \ |
| 162 | + -d '{"text":"hello"}' \ |
| 163 | + -H 'Content-Type: application/json' |
| 164 | +``` |
| 165 | + |
| 166 | +3. Retriever Microservice |
| 167 | + To validate the retriever microservice, you need to generate a mock embedding vector of length 768 in Python script: |
| 168 | + |
| 169 | +```bash |
| 170 | +your_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)") |
| 171 | +curl http://${host_ip}:7000/v1/retrieval \ |
| 172 | + -X POST \ |
| 173 | + -d '{"text":"What is the revenue of Nike in 2023?","embedding":"'"${your_embedding}"'"}' \ |
| 174 | + -H 'Content-Type: application/json' |
| 175 | +``` |
| 176 | + |
| 177 | +4. TEI Reranking Service |
| 178 | + |
| 179 | +```bash |
| 180 | +curl http://${host_ip}:8808/rerank \ |
| 181 | + -X POST \ |
| 182 | + -d '{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}' \ |
| 183 | + -H 'Content-Type: application/json' |
| 184 | +``` |
| 185 | + |
| 186 | +5. Reranking Microservice |
| 187 | + |
| 188 | +```bash |
| 189 | +curl http://${host_ip}:8000/v1/reranking\ |
| 190 | + -X POST \ |
| 191 | + -d '{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}' \ |
| 192 | + -H 'Content-Type: application/json' |
| 193 | +``` |
| 194 | + |
| 195 | +6. Ollama Service |
| 196 | + |
| 197 | +```bash |
| 198 | +curl http://${host_ip}:11434/api/generate -d '{"model": "llama3", "prompt":"What is Deep Learning?"}' |
| 199 | +``` |
| 200 | + |
| 201 | +7. LLM Microservice |
| 202 | + |
| 203 | +```bash |
| 204 | +curl http://${host_ip}:9000/v1/chat/completions\ |
| 205 | + -X POST \ |
| 206 | + -d '{"query":"What is Deep Learning?","max_new_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":true}' \ |
| 207 | + -H 'Content-Type: application/json' |
| 208 | +``` |
| 209 | + |
| 210 | +8. MegaService |
| 211 | + |
| 212 | +```bash |
| 213 | +curl http://${host_ip}:8888/v1/chatqna -H "Content-Type: application/json" -d '{ |
| 214 | + "messages": "What is the revenue of Nike in 2023?" |
| 215 | + }' |
| 216 | +``` |
| 217 | + |
| 218 | +9. Dataprep Microservice(Optional) |
| 219 | + |
| 220 | +If you want to update the default knowledge base, you can use the following commands: |
| 221 | + |
| 222 | +Update Knowledge Base via Local File Upload: |
| 223 | + |
| 224 | +```bash |
| 225 | +curl -X POST "http://${host_ip}:6007/v1/dataprep" \ |
| 226 | + -H "Content-Type: multipart/form-data" \ |
| 227 | + -F "files=@./nke-10k-2023.pdf" |
| 228 | +``` |
| 229 | + |
| 230 | +This command updates a knowledge base by uploading a local file for processing. Update the file path according to your environment. |
| 231 | + |
| 232 | +Add Knowledge Base via HTTP Links: |
| 233 | + |
| 234 | +```bash |
| 235 | +curl -X POST "http://${host_ip}:6007/v1/dataprep" \ |
| 236 | + -H "Content-Type: multipart/form-data" \ |
| 237 | + -F 'link_list=["https://opea.dev"]' |
| 238 | +``` |
| 239 | + |
| 240 | +This command updates a knowledge base by submitting a list of HTTP links for processing. |
| 241 | + |
| 242 | +## 🚀 Launch the UI |
| 243 | + |
| 244 | +To access the frontend, open the following URL in your browser: http://{host_ip}:5173. |
0 commit comments