You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
**ONNX Runtime**is a cross-platform inference and training accelerator compatible with many popular ML/DNN frameworks. Check its [github](https://github.com/microsoft/onnxruntime) for more information.
*Please note that only **onnxruntime>=1.8.1**of on Linux platform is supported by now.*
9
+
*请注意,目前Linux平台只支持 **onnxruntime>=1.8.1**。*
10
10
11
-
### Install ONNX Runtime python package
11
+
### 安装ONNX Runtime python包
12
12
13
-
- CPU Version
13
+
- CPU 版本
14
14
15
15
```bash
16
-
pip install onnxruntime==1.8.1 #if you want to use cpu version
16
+
pip install onnxruntime==1.8.1 #如果你想用cpu版本
17
17
```
18
18
19
-
- GPU Version
19
+
- GPU 版本
20
20
21
21
```bash
22
-
pip install onnxruntime-gpu==1.8.1 #if you want to use gpu version
22
+
pip install onnxruntime-gpu==1.8.1 #如果你想用gpu版本
23
23
```
24
24
25
-
### Install float16 conversion tool (optional)
25
+
### 安装float16转换工具(可选)
26
26
27
-
If you want to use float16 precision, install the tool by running the following script:
27
+
如果你想用float16精度,请执行以下脚本安装工具:
28
28
29
29
```bash
30
30
pip install onnx onnxconverter-common
31
31
```
32
32
33
-
## Build custom ops
33
+
## 构建自定义算子
34
34
35
-
### Download ONNXRuntime Library
35
+
### 下载ONNXRuntime库
36
36
37
-
Download `onnxruntime-linux-*.tgz` library from ONNX Runtime[releases](https://github.com/microsoft/onnxruntime/releases/tag/v1.8.1), extract it, expose `ONNXRUNTIME_DIR` and finally add the lib path to `LD_LIBRARY_PATH` as below:
-The custom operator is not included in [supported operator list](https://github.com/microsoft/onnxruntime/blob/master/docs/OperatorKernels.md) in ONNX Runtime.
90
-
-The custom operator should be able to be exported to ONNX.
-[How to export Pytorch model with custom op to ONNX and run it in ONNX Runtime](https://github.com/onnx/tutorials/blob/master/PyTorchCustomOperator/README.md)
106
-
-[How to add a custom operator/kernel in ONNX Runtime](https://onnxruntime.ai/docs/reference/operators/add-custom-op.html)
TRT 7.2.1 switches to use cuBLASLt (previously it was cuBLAS). cuBLASLt is the default choice for SM version >= 7.0. However, you may need CUDA-10.2 Patch 1 (Released Aug 26, 2020) to resolve some cuBLASLt issues. Another option is to use the new TacticSource API and disable cuBLASLt tactics if you don't want to upgrade.
133
+
TRT 7.2.1切换到使用cuBLASLt(以前是cuBLAS)。cuBLASLt是SM版本>= 7.0的默认选择。但是,您可能需要CUDA-10.2补丁1(2020年8月26日发布)来解决一些cuBLASLt问题。如果不想升级,另一个选择是使用新的TacticSource API并禁用cuBLASLt策略。
134
134
135
-
Read [this](https://forums.developer.nvidia.com/t/matrixmultiply-failed-on-tensorrt-7-2-1/158187/4) for detail.
0 commit comments