Skip to content

Commit f0f29c3

Browse files
committed
fix conflicts
1 parent e2a7068 commit f0f29c3

File tree

4 files changed

+38
-38
lines changed

4 files changed

+38
-38
lines changed

docs/en/02-how-to-run/prebuilt_package_windows.md

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@
2121

2222
______________________________________________________________________
2323

24-
This tutorial takes `mmdeploy-0.13.0-windows-amd64.zip` and `mmdeploy-0.13.0-windows-amd64-cuda11.3.zip` as examples to show how to use the prebuilt packages. The former supports onnxruntime cpu inference, the latter supports onnxruntime-gpu and tensorrt inference.
24+
This tutorial takes `mmdeploy-0.14.0-windows-amd64.zip` and `mmdeploy-0.14.0-windows-amd64-cuda11.3.zip` as examples to show how to use the prebuilt packages. The former supports onnxruntime cpu inference, the latter supports onnxruntime-gpu and tensorrt inference.
2525

2626
The directory structure of the prebuilt package is as follows, where the `dist` folder is about model converter, and the `sdk` folder is related to model inference.
2727

@@ -81,8 +81,8 @@ In order to use `ONNX Runtime` backend, you should also do the following steps.
8181
5. Install `mmdeploy` (Model Converter) and `mmdeploy_runtime` (SDK Python API).
8282

8383
```bash
84-
pip install mmdeploy==0.13.0
85-
pip install mmdeploy-runtime==0.13.0
84+
pip install mmdeploy==0.14.0
85+
pip install mmdeploy-runtime==0.14.0
8686
```
8787

8888
:point_right: If you have installed it before, please uninstall it first.
@@ -100,7 +100,7 @@ In order to use `ONNX Runtime` backend, you should also do the following steps.
100100
![sys-path](https://user-images.githubusercontent.com/16019484/181463801-1d7814a8-b256-46e9-86f2-c08de0bc150b.png)
101101
:exclamation: Restart powershell to make the environment variables setting take effect. You can check whether the settings are in effect by `echo $env:PATH`.
102102

103-
8. Download SDK C/cpp Library mmdeploy-0.13.0-windows-amd64.zip
103+
8. Download SDK C/cpp Library mmdeploy-0.14.0-windows-amd64.zip
104104

105105
### TensorRT
106106

@@ -109,8 +109,8 @@ In order to use `TensorRT` backend, you should also do the following steps.
109109
5. Install `mmdeploy` (Model Converter) and `mmdeploy_runtime` (SDK Python API).
110110

111111
```bash
112-
pip install mmdeploy==0.13.0
113-
pip install mmdeploy-runtime-gpu==0.13.0
112+
pip install mmdeploy==0.14.0
113+
pip install mmdeploy-runtime-gpu==0.14.0
114114
```
115115

116116
:point_right: If you have installed it before, please uninstall it first.
@@ -129,7 +129,7 @@ In order to use `TensorRT` backend, you should also do the following steps.
129129

130130
7. Install pycuda by `pip install pycuda`
131131

132-
8. Download SDK C/cpp Library mmdeploy-0.13.0-windows-amd64-cuda11.3.zip
132+
8. Download SDK C/cpp Library mmdeploy-0.14.0-windows-amd64-cuda11.3.zip
133133

134134
## Model Convert
135135

@@ -141,7 +141,7 @@ After preparation work, the structure of the current working directory should be
141141

142142
```
143143
..
144-
|-- mmdeploy-0.13.0-windows-amd64
144+
|-- mmdeploy-0.14.0-windows-amd64
145145
|-- mmclassification
146146
|-- mmdeploy
147147
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@@ -189,7 +189,7 @@ After installation of mmdeploy-tensorrt prebuilt package, the structure of the c
189189

190190
```
191191
..
192-
|-- mmdeploy-0.13.0-windows-amd64-cuda11.3
192+
|-- mmdeploy-0.14.0-windows-amd64-cuda11.3
193193
|-- mmclassification
194194
|-- mmdeploy
195195
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@@ -252,8 +252,8 @@ The structure of current working directory:
252252

253253
```
254254
.
255-
|-- mmdeploy-0.14.0-windows-amd64-cuda11.1-tensorrt8.2.3.0
256-
|-- mmdeploy-0.14.0-windows-amd64-onnxruntime1.8.1
255+
|-- mmdeploy-0.14.0-windows-amd64
256+
|-- mmdeploy-0.14.0-windows-amd64-cuda11.3
257257
|-- mmclassification
258258
|-- mmdeploy
259259
|-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@@ -324,7 +324,7 @@ The following describes how to use the SDK's C API for inference
324324

325325
It is recommended to use `CMD` here.
326326

327-
Under `mmdeploy-0.13.0-windows-amd64\\example\\cpp\\build\\Release` directory:
327+
Under `mmdeploy-0.14.0-windows-amd64\\example\\cpp\\build\\Release` directory:
328328

329329
```
330330
.\image_classification.exe cpu C:\workspace\work_dir\onnx\resnet\ C:\workspace\mmclassification\demo\demo.JPEG
@@ -344,7 +344,7 @@ The following describes how to use the SDK's C API for inference
344344

345345
It is recommended to use `CMD` here.
346346

347-
Under `mmdeploy-0.13.0-windows-amd64-cuda11.3\\example\\cpp\\build\\Release` directory
347+
Under `mmdeploy-0.14.0-windows-amd64-cuda11.3\\example\\cpp\\build\\Release` directory
348348

349349
```
350350
.\image_classification.exe cuda C:\workspace\work_dir\trt\resnet C:\workspace\mmclassification\demo\demo.JPEG

docs/en/get_started.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -117,14 +117,14 @@ Take the latest precompiled package as example, you can install it as follows:
117117

118118
```shell
119119
# 1. install MMDeploy model converter
120-
pip install mmdeploy==0.13.0
120+
pip install mmdeploy==0.14.0
121121

122122
# 2. install MMDeploy sdk inference
123123
# you can install one to install according whether you need gpu inference
124124
# 2.1 support onnxruntime
125-
pip install mmdeploy-runtime==0.13.0
125+
pip install mmdeploy-runtime==0.14.0
126126
# 2.2 support onnxruntime-gpu, tensorrt
127-
pip install mmdeploy-runtime-gpu==0.13.0
127+
pip install mmdeploy-runtime-gpu==0.14.0
128128

129129
# 3. install inference engine
130130
# 3.1 install TensorRT
@@ -229,9 +229,9 @@ result = inference_model(
229229
You can directly run MMDeploy demo programs in the precompiled package to get inference results.
230230

231231
```shell
232-
wget https://github.com/open-mmlab/mmdeploy/releases/download/v0.13.0/mmdeploy-0.13.0-linux-x86_64-cuda11.3.tar.gz
233-
tar xf mmdeploy-0.13.0-linux-x86_64-cuda11.3
234-
cd mmdeploy-0.13.0-linux-x86_64-cuda11.3
232+
wget https://github.com/open-mmlab/mmdeploy/releases/download/v0.14.0/mmdeploy-0.14.0-linux-x86_64-cuda11.3.tar.gz
233+
tar xf mmdeploy-0.14.0-linux-x86_64-cuda11.3
234+
cd mmdeploy-0.14.0-linux-x86_64-cuda11.3
235235
# run python demo
236236
python example/python/object_detection.py cuda ../mmdeploy_model/faster-rcnn ../mmdetection/demo/demo.jpg
237237
# run C/C++ demo

docs/zh_cn/02-how-to-run/prebuilt_package_windows.md

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ ______________________________________________________________________
2323

2424
目前,`MMDeploy``Windows`平台下提供`cpu`以及`cuda`两种Device的预编译包,其中`cpu`版支持使用onnxruntime cpu进行推理,`cuda`版支持使用onnxruntime-gpu以及tensorrt进行推理,可以从[Releases](https://github.com/open-mmlab/mmdeploy/releases)获取。。
2525

26-
本篇教程以`mmdeploy-0.13.0-windows-amd64.zip``mmdeploy-0.13.0-windows-amd64-cuda11.3.zip`为例,展示预编译包的使用方法。
26+
本篇教程以`mmdeploy-0.14.0-windows-amd64.zip``mmdeploy-0.14.0-windows-amd64-cuda11.3.zip`为例,展示预编译包的使用方法。
2727

2828
为了方便使用者快速上手,本教程以分类模型(mmclassification)为例,展示两种预编译包的使用方法。
2929

@@ -89,8 +89,8 @@ ______________________________________________________________________
8989
5. 安装`mmdeploy`(模型转换)以及`mmdeploy_runtime`(模型推理Python API)的预编译包
9090

9191
```bash
92-
pip install mmdeploy==0.13.0
93-
pip install mmdeploy-runtime==0.13.0
92+
pip install mmdeploy==0.14.0
93+
pip install mmdeploy-runtime==0.14.0
9494
```
9595

9696
:point_right: 如果之前安装过,需要先卸载后再安装。
@@ -108,7 +108,7 @@ ______________________________________________________________________
108108
![sys-path](https://user-images.githubusercontent.com/16019484/181463801-1d7814a8-b256-46e9-86f2-c08de0bc150b.png)
109109
:exclamation: 重启powershell让环境变量生效,可以通过 echo $env:PATH 来检查是否设置成功。
110110

111-
8. 下载 SDK C/cpp Library mmdeploy-0.13.0-windows-amd64.zip
111+
8. 下载 SDK C/cpp Library mmdeploy-0.14.0-windows-amd64.zip
112112

113113
### TensorRT
114114

@@ -117,8 +117,8 @@ ______________________________________________________________________
117117
5. 安装`mmdeploy`(模型转换)以及`mmdeploy_runtime`(模型推理Python API)的预编译包
118118

119119
```bash
120-
pip install mmdeploy==0.13.0
121-
pip install mmdeploy-runtime-gpu==0.13.0
120+
pip install mmdeploy==0.14.0
121+
pip install mmdeploy-runtime-gpu==0.14.0
122122
```
123123

124124
:point_right: 如果之前安装过,需要先卸载后再安装
@@ -137,7 +137,7 @@ ______________________________________________________________________
137137

138138
7. 安装pycuda `pip install pycuda`
139139

140-
8. 下载 SDK C/cpp Library mmdeploy-0.13.0-windows-amd64-cuda11.3.zip
140+
8. 下载 SDK C/cpp Library mmdeploy-0.14.0-windows-amd64-cuda11.3.zip
141141

142142
## 模型转换
143143

@@ -149,7 +149,7 @@ ______________________________________________________________________
149149

150150
```
151151
..
152-
|-- mmdeploy-0.13.0-windows-amd64
152+
|-- mmdeploy-0.14.0-windows-amd64
153153
|-- mmclassification
154154
|-- mmdeploy
155155
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@@ -197,7 +197,7 @@ export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)
197197

198198
```
199199
..
200-
|-- mmdeploy-0.13.0-windows-amd64-cuda11.3
200+
|-- mmdeploy-0.14.0-windows-amd64-cuda11.3
201201
|-- mmclassification
202202
|-- mmdeploy
203203
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@@ -260,8 +260,8 @@ export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)
260260

261261
```
262262
.
263-
|-- mmdeploy-0.14.0-windows-amd64-cuda11.1-tensorrt8.2.3.0
264-
|-- mmdeploy-0.14.0-windows-amd64-onnxruntime1.8.1
263+
|-- mmdeploy-0.14.0-windows-amd64
264+
|-- mmdeploy-0.14.0-windows-amd64-cuda11.3
265265
|-- mmclassification
266266
|-- mmdeploy
267267
|-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@@ -340,7 +340,7 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet
340340

341341
这里建议使用cmd,这样如果exe运行时如果找不到相关的dll的话会有弹窗
342342

343-
在mmdeploy-0.13.0-windows-amd64-onnxruntime1.8.1\\example\\cpp\\build\\Release目录下:
343+
在mmdeploy-0.14.0-windows-amd64\\example\\cpp\\build\\Release目录下:
344344

345345
```
346346
.\image_classification.exe cpu C:\workspace\work_dir\onnx\resnet\ C:\workspace\mmclassification\demo\demo.JPEG
@@ -360,7 +360,7 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet
360360

361361
这里建议使用cmd,这样如果exe运行时如果找不到相关的dll的话会有弹窗
362362

363-
在mmdeploy-0.13.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\\example\\cpp\\build\\Release目录下:
363+
在mmdeploy-0.14.0-windows-amd64-cuda11.3\\example\\cpp\\build\\Release目录下:
364364

365365
```
366366
.\image_classification.exe cuda C:\workspace\work_dir\trt\resnet C:\workspace\mmclassification\demo\demo.JPEG

docs/zh_cn/get_started.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -113,14 +113,14 @@ mim install mmcv-full
113113

114114
```shell
115115
# 1. 安装 MMDeploy 模型转换工具(含trt/ort自定义算子)
116-
pip install mmdeploy==0.13.0
116+
pip install mmdeploy==0.14.0
117117

118118
# 2. 安装 MMDeploy SDK推理工具
119119
# 根据是否需要GPU推理可任选其一进行下载安装
120120
# 2.1 支持 onnxruntime 推理
121-
pip install mmdeploy-runtime==0.13.0
121+
pip install mmdeploy-runtime==0.14.0
122122
# 2.2 支持 onnxruntime-gpu tensorrt 推理
123-
pip install mmdeploy-runtime-gpu==0.13.0
123+
pip install mmdeploy-runtime-gpu==0.14.0
124124

125125
# 3. 安装推理引擎
126126
# 3.1 安装推理引擎 TensorRT
@@ -223,10 +223,10 @@ result = inference_model(
223223
你可以直接运行预编译包中的 demo 程序,输入 SDK Model 和图像,进行推理,并查看推理结果。
224224

225225
```shell
226-
wget https://github.com/open-mmlab/mmdeploy/releases/download/v0.13.0/mmdeploy-0.13.0-linux-x86_64-cuda11.3.tar.gz
227-
tar xf mmdeploy-0.13.0-linux-x86_64-cuda11.3
226+
wget https://github.com/open-mmlab/mmdeploy/releases/download/v0.14.0/mmdeploy-0.14.0-linux-x86_64-cuda11.3.tar.gz
227+
tar xf mmdeploy-0.14.0-linux-x86_64-cuda11.3
228228

229-
cd mmdeploy-0.13.0-linux-x86_64-cuda11.3
229+
cd mmdeploy-0.14.0-linux-x86_64-cuda11.3
230230
# 运行 python demo
231231
python example/python/object_detection.py cuda ../mmdeploy_model/faster-rcnn ../mmdetection/demo/demo.jpg
232232
# 运行 C/C++ demo

0 commit comments

Comments
 (0)