diff --git a/testdata/dnn/onnx/data/input_argmax.npy b/testdata/dnn/onnx/data/input_argmax.npy index 1f5635f65..678b81231 100644 Binary files a/testdata/dnn/onnx/data/input_argmax.npy and b/testdata/dnn/onnx/data/input_argmax.npy differ diff --git a/testdata/dnn/onnx/data/input_argmin.npy b/testdata/dnn/onnx/data/input_argmin.npy index 8dca6d863..34a417953 100644 Binary files a/testdata/dnn/onnx/data/input_argmin.npy and b/testdata/dnn/onnx/data/input_argmin.npy differ diff --git a/testdata/dnn/onnx/data/output_argmax.npy b/testdata/dnn/onnx/data/output_argmax.npy index e166ce004..fa9fc0f82 100644 Binary files a/testdata/dnn/onnx/data/output_argmax.npy and b/testdata/dnn/onnx/data/output_argmax.npy differ diff --git a/testdata/dnn/onnx/data/output_argmin.npy b/testdata/dnn/onnx/data/output_argmin.npy index 09e82a2e3..c8975d7a0 100644 Binary files a/testdata/dnn/onnx/data/output_argmin.npy and b/testdata/dnn/onnx/data/output_argmin.npy differ diff --git a/testdata/dnn/onnx/generate_onnx_models.py b/testdata/dnn/onnx/generate_onnx_models.py index 7ed85ba86..f6a1480f6 100644 --- a/testdata/dnn/onnx/generate_onnx_models.py +++ b/testdata/dnn/onnx/generate_onnx_models.py @@ -2665,7 +2665,7 @@ def __init__(self, *args, **kwargs): super(ArgMax, self).__init__() def forward(self, x): - return torch.argmax(x, dim=2, keepdims=False).to(torch.float32) + return torch.argmax(x, dim=2, keepdims=False) model = ArgMax() input_ = Variable(torch.randn(2, 3, 4, 5, dtype=torch.float32)) @@ -2676,7 +2676,7 @@ def __init__(self, *args, **kwargs): super(ArgMin, self).__init__() def forward(self, x): - return torch.argmin(x, dim=-1, keepdims=True).to(torch.float32) + return torch.argmin(x, dim=-1, keepdims=True) model = ArgMin() input_ = Variable(torch.randn(2, 3, 4, 5, dtype=torch.float32)) diff --git a/testdata/dnn/onnx/models/argmax.onnx b/testdata/dnn/onnx/models/argmax.onnx index 28b282d3b..754090ce5 100644 Binary files a/testdata/dnn/onnx/models/argmax.onnx and b/testdata/dnn/onnx/models/argmax.onnx differ diff --git a/testdata/dnn/onnx/models/argmin.onnx b/testdata/dnn/onnx/models/argmin.onnx index 2e8e7cb13..028e00409 100644 Binary files a/testdata/dnn/onnx/models/argmin.onnx and b/testdata/dnn/onnx/models/argmin.onnx differ diff --git a/testdata/dnn/tensorflow/argmax_in.npy b/testdata/dnn/tensorflow/argmax_in.npy index 8fba6393d..766b29f67 100644 Binary files a/testdata/dnn/tensorflow/argmax_in.npy and b/testdata/dnn/tensorflow/argmax_in.npy differ diff --git a/testdata/dnn/tensorflow/argmax_net.pb b/testdata/dnn/tensorflow/argmax_net.pb index 2857d1cd6..3da2e164c 100644 Binary files a/testdata/dnn/tensorflow/argmax_net.pb and b/testdata/dnn/tensorflow/argmax_net.pb differ diff --git a/testdata/dnn/tensorflow/argmax_out.npy b/testdata/dnn/tensorflow/argmax_out.npy index fbbcbbe83..21f42641e 100644 Binary files a/testdata/dnn/tensorflow/argmax_out.npy and b/testdata/dnn/tensorflow/argmax_out.npy differ diff --git a/testdata/dnn/tensorflow/argmin_in.npy b/testdata/dnn/tensorflow/argmin_in.npy index c788844a5..49c373440 100644 Binary files a/testdata/dnn/tensorflow/argmin_in.npy and b/testdata/dnn/tensorflow/argmin_in.npy differ diff --git a/testdata/dnn/tensorflow/argmin_net.pb b/testdata/dnn/tensorflow/argmin_net.pb index 5796b7954..ace040bf0 100644 Binary files a/testdata/dnn/tensorflow/argmin_net.pb and b/testdata/dnn/tensorflow/argmin_net.pb differ diff --git a/testdata/dnn/tensorflow/argmin_out.npy b/testdata/dnn/tensorflow/argmin_out.npy index ed43e6ac1..01b64eac0 100644 Binary files a/testdata/dnn/tensorflow/argmin_out.npy and b/testdata/dnn/tensorflow/argmin_out.npy differ diff --git a/testdata/dnn/tensorflow/generate_tf2_models.py b/testdata/dnn/tensorflow/generate_tf2_models.py index 61928554b..21b56c1ee 100644 --- a/testdata/dnn/tensorflow/generate_tf2_models.py +++ b/testdata/dnn/tensorflow/generate_tf2_models.py @@ -28,7 +28,7 @@ def writeBlob(data, name, nchw = False): # NDHWC->NCDHW data = data.transpose(0, 4, 1, 2, 3) - data = np.ascontiguousarray(data.astype(np.float32)) + data = np.ascontiguousarray(data) np.save(name + '.npy', data) @@ -148,6 +148,18 @@ def saveBroken(graph, name): y = tf.compat.v1.nn.conv2d_backprop_input(input_sizes=tf.constant([1, 3, 4, 2]), filter=kernel, out_backprop=x, data_format = "NHWC", padding = [[0, 0], [2, 1], [2, 1], [0, 0]], strides = [1, 3, 2, 1]) model = tf.keras.Model(x, y) save(model, 'conv2d_backprop_input_asymmetric_pads_nhwc', False, x=tf.TensorSpec(shape=(1, 2, 3, 3), dtype=tf.float32)) +################################################################################ +tf.keras.backend.set_image_data_format('channels_first') +x = tf.keras.layers.Input(batch_shape = (2, 3, 4), name='x') +y = tf.math.argmax(x, axis=-1) +model = tf.keras.Model(x, y) +save(model, 'argmax', True, x=tf.TensorSpec(shape=(2, 3, 4), dtype=tf.float32)) +################################################################################ +tf.keras.backend.set_image_data_format('channels_last') +x = tf.keras.layers.Input(batch_shape = (2, 3, 4), name='x') +y = tf.math.argmin(x, axis=1) +model = tf.keras.Model(x, y) +save(model, 'argmin', False, x=tf.TensorSpec(shape=(2, 3, 4), dtype=tf.float32)) # Uncomment to print the final graph. # with tf.io.gfile.GFile('tf2_prelu_net.pb', 'rb') as f: diff --git a/testdata/dnn/tensorflow/generate_tf_models.py b/testdata/dnn/tensorflow/generate_tf_models.py index 4e0c0423b..20a62a431 100644 --- a/testdata/dnn/tensorflow/generate_tf_models.py +++ b/testdata/dnn/tensorflow/generate_tf_models.py @@ -1070,14 +1070,6 @@ def pad_depth(x, desired_channels): square = tf.square(inp) save(inp, square, 'square') ################################################################################ -inp = tf.placeholder(tf.float32, [2, 3, 4], 'input') -argmax = tf.argmax(inp, -1) -save(inp, argmax, 'argmax') -################################################################################ -inp = tf.placeholder(tf.float32, [2, 3, 4], 'input') -argmin = tf.argmin(inp, 1) -save(inp, argmin, 'argmin') -################################################################################ # Generate graph and test data for Reshape permutations check stride = 1 kernel_size = 3