diff --git a/testdata/dnn/onnx/data/input_min_0.npy b/testdata/dnn/onnx/data/input_min_0.npy new file mode 100644 index 000000000..2fcd58621 Binary files /dev/null and b/testdata/dnn/onnx/data/input_min_0.npy differ diff --git a/testdata/dnn/onnx/data/input_min_1.npy b/testdata/dnn/onnx/data/input_min_1.npy new file mode 100644 index 000000000..f0d172b19 Binary files /dev/null and b/testdata/dnn/onnx/data/input_min_1.npy differ diff --git a/testdata/dnn/onnx/data/output_min.npy b/testdata/dnn/onnx/data/output_min.npy new file mode 100644 index 000000000..bdc8ad2f8 Binary files /dev/null and b/testdata/dnn/onnx/data/output_min.npy differ diff --git a/testdata/dnn/onnx/generate_onnx_models.py b/testdata/dnn/onnx/generate_onnx_models.py index 6a5515281..f1eafb1e6 100644 --- a/testdata/dnn/onnx/generate_onnx_models.py +++ b/testdata/dnn/onnx/generate_onnx_models.py @@ -1126,6 +1126,19 @@ def forward(self, x): model = ReduceMax(axes=1) save_data_and_model("reduce_max_axis_1", x, model) +class Min(nn.Module): + def __init__(self, *args, **kwargs): + super(Min, self).__init__() + + def forward(self, a, b): + return torch.min(a, b) + +model = Min() +input_0 = Variable(torch.randn(2, 3, 4, 5, dtype=torch.float32)) +input_1 = Variable(torch.randn(2, 3, 4, 5, dtype=torch.float32)) +save_data_and_model_multy_inputs("min", model, input_0, input_1, export_params=True) +simplify('models/min.onnx', False) + class ResizeConv(nn.Module): def __init__( self, diff --git a/testdata/dnn/onnx/models/min.onnx b/testdata/dnn/onnx/models/min.onnx new file mode 100644 index 000000000..80ba45a04 Binary files /dev/null and b/testdata/dnn/onnx/models/min.onnx differ