@@ -340,73 +340,47 @@ def test_factorize_na_sentinel(self, sort, na_sentinel, data, uniques):
340
340
tm .assert_extension_array_equal (uniques , expected_uniques )
341
341
342
342
@pytest .mark .parametrize (
343
- "data, dropna, expected_codes, expected_uniques" ,
343
+ "data, expected_codes, expected_uniques" ,
344
344
[
345
345
(
346
346
["a" , None , "b" , "a" ],
347
- True ,
348
- np .array ([0 , - 1 , 1 , 0 ], dtype = np .dtype ("intp" )),
349
- np .array (["a" , "b" ], dtype = object ),
350
- ),
351
- (
352
- ["a" , np .nan , "b" , "a" ],
353
- True ,
354
- np .array ([0 , - 1 , 1 , 0 ], dtype = np .dtype ("intp" )),
355
- np .array (["a" , "b" ], dtype = object ),
356
- ),
357
- (
358
- ["a" , None , "b" , "a" ],
359
- False ,
360
347
np .array ([0 , 2 , 1 , 0 ], dtype = np .dtype ("intp" )),
361
348
np .array (["a" , "b" , np .nan ], dtype = object ),
362
349
),
363
350
(
364
351
["a" , np .nan , "b" , "a" ],
365
- False ,
366
352
np .array ([0 , 2 , 1 , 0 ], dtype = np .dtype ("intp" )),
367
353
np .array (["a" , "b" , np .nan ], dtype = object ),
368
354
),
369
355
],
370
356
)
371
- def test_object_factorize_dropna (
372
- self , data , dropna , expected_codes , expected_uniques
357
+ def test_object_factorize_na_sentinel_none (
358
+ self , data , expected_codes , expected_uniques
373
359
):
374
- codes , uniques = algos .factorize (data , dropna = dropna )
360
+ codes , uniques = algos .factorize (data , na_sentinel = None )
375
361
376
362
tm .assert_numpy_array_equal (uniques , expected_uniques )
377
363
tm .assert_numpy_array_equal (codes , expected_codes )
378
364
379
365
@pytest .mark .parametrize (
380
- "data, dropna, expected_codes, expected_uniques" ,
366
+ "data, expected_codes, expected_uniques" ,
381
367
[
382
368
(
383
369
[1 , None , 1 , 2 ],
384
- True ,
385
- np .array ([0 , - 1 , 0 , 1 ], dtype = np .dtype ("intp" )),
386
- np .array ([1 , 2 ], dtype = "O" ),
387
- ),
388
- (
389
- [1 , np .nan , 1 , 2 ],
390
- True ,
391
- np .array ([0 , - 1 , 0 , 1 ], dtype = np .dtype ("intp" )),
392
- np .array ([1 , 2 ], dtype = np .float64 ),
393
- ),
394
- (
395
- [1 , None , 1 , 2 ],
396
- False ,
397
370
np .array ([0 , 2 , 0 , 1 ], dtype = np .dtype ("intp" )),
398
371
np .array ([1 , 2 , np .nan ], dtype = "O" ),
399
372
),
400
373
(
401
374
[1 , np .nan , 1 , 2 ],
402
- False ,
403
375
np .array ([0 , 2 , 0 , 1 ], dtype = np .dtype ("intp" )),
404
376
np .array ([1 , 2 , np .nan ], dtype = np .float64 ),
405
377
),
406
378
],
407
379
)
408
- def test_int_factorize_dropna (self , data , dropna , expected_codes , expected_uniques ):
409
- codes , uniques = algos .factorize (data , dropna = dropna )
380
+ def test_int_factorize_na_sentinel_none (
381
+ self , data , expected_codes , expected_uniques
382
+ ):
383
+ codes , uniques = algos .factorize (data , na_sentinel = None )
410
384
411
385
tm .assert_numpy_array_equal (uniques , expected_uniques )
412
386
tm .assert_numpy_array_equal (codes , expected_codes )
0 commit comments