@@ -54,7 +54,7 @@ class ParserWarning(Warning):
5454 Skip spaces after delimiter
5555escapechar : string (length 1), default None
5656 One-character string used to escape delimiter when quoting is QUOTE_NONE.
57- dtype : Type name or dict of column -> type
57+ dtype : Type name or dict of column -> type, default None
5858 Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32}
5959 (Unsupported with engine='python')
6060compression : {'gzip', 'bz2', 'infer', None}, default 'infer'
@@ -65,7 +65,7 @@ class ParserWarning(Warning):
6565dialect : string or csv.Dialect instance, default None
6666 If None defaults to Excel dialect. Ignored if sep longer than 1 char
6767 See csv.Dialect documentation for more details
68- header : int, list of ints
68+ header : int, list of ints, default 'infer'
6969 Row number(s) to use as the column names, and the start of the
7070 data. Defaults to 0 if no ``names`` passed, otherwise ``None``. Explicitly
7171 pass ``header=0`` to be able to replace existing names. The header can be
@@ -74,30 +74,30 @@ class ParserWarning(Warning):
7474 skipped (e.g. 2 in this example are skipped). Note that this parameter
7575 ignores commented lines and empty lines if ``skip_blank_lines=True``, so header=0
7676 denotes the first line of data rather than the first line of the file.
77- skiprows : list-like or integer
77+ skiprows : list-like or integer, default None
7878 Line numbers to skip (0-indexed) or number of lines to skip (int)
7979 at the start of the file
8080index_col : int or sequence or False, default None
8181 Column to use as the row labels of the DataFrame. If a sequence is given, a
8282 MultiIndex is used. If you have a malformed file with delimiters at the end
8383 of each line, you might consider index_col=False to force pandas to _not_
8484 use the first column as the index (row names)
85- names : array-like
85+ names : array-like, default None
8686 List of column names to use. If file contains no header row, then you
8787 should explicitly pass header=None
8888prefix : string, default None
8989 Prefix to add to column numbers when no header, e.g 'X' for X0, X1, ...
9090na_values : str, list-like or dict, default None
9191 Additional strings to recognize as NA/NaN. If dict passed, specific
9292 per-column NA values
93- true_values : list
93+ true_values : list, default None
9494 Values to consider as True
95- false_values : list
95+ false_values : list, default None
9696 Values to consider as False
9797keep_default_na : bool, default True
9898 If na_values are specified and keep_default_na is False the default NaN
9999 values are overridden, otherwise they're appended to
100- parse_dates : boolean, list of ints or names, list of lists, or dict
100+ parse_dates : boolean, list of ints or names, list of lists, or dict, default False
101101 If True -> try parsing the index.
102102 If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column.
103103 If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column.
@@ -106,7 +106,7 @@ class ParserWarning(Warning):
106106keep_date_col : boolean, default False
107107 If True and parse_dates specifies combining multiple columns then
108108 keep the original columns.
109- date_parser : function
109+ date_parser : function, default None
110110 Function to use for converting a sequence of string columns to an
111111 array of datetime instances. The default uses dateutil.parser.parser
112112 to do the conversion. Pandas will try to call date_parser in three different
@@ -154,7 +154,7 @@ class ParserWarning(Warning):
154154 Detect missing value markers (empty strings and the value of na_values). In
155155 data without any NAs, passing na_filter=False can improve the performance
156156 of reading a large file
157- usecols : array-like
157+ usecols : array-like, default None
158158 Return a subset of the columns.
159159 Results in much faster parsing time and lower memory usage.
160160mangle_dupe_cols : boolean, default True
0 commit comments