|
1 |
| -import string |
2 |
| - |
3 | 1 | import numpy as np
|
4 | 2 | import pandas.util.testing as tm
|
5 |
| -from pandas import (Series, date_range, DatetimeIndex, Index, MultiIndex, |
6 |
| - RangeIndex, Float64Index) |
| 3 | +from pandas import (Series, date_range, DatetimeIndex, Index, RangeIndex, |
| 4 | + Float64Index) |
7 | 5 |
|
8 | 6 | from .pandas_vb_common import setup # noqa
|
9 | 7 |
|
@@ -86,66 +84,6 @@ def time_modulo(self, dtype):
|
86 | 84 | self.index % 2
|
87 | 85 |
|
88 | 86 |
|
89 |
| -class Duplicated(object): |
90 |
| - |
91 |
| - goal_time = 0.2 |
92 |
| - |
93 |
| - def setup(self): |
94 |
| - n, k = 200, 5000 |
95 |
| - levels = [np.arange(n), |
96 |
| - tm.makeStringIndex(n).values, |
97 |
| - 1000 + np.arange(n)] |
98 |
| - labels = [np.random.choice(n, (k * n)) for lev in levels] |
99 |
| - self.mi = MultiIndex(levels=levels, labels=labels) |
100 |
| - |
101 |
| - def time_duplicated(self): |
102 |
| - self.mi.duplicated() |
103 |
| - |
104 |
| - |
105 |
| -class Sortlevel(object): |
106 |
| - |
107 |
| - goal_time = 0.2 |
108 |
| - |
109 |
| - def setup(self): |
110 |
| - n = 1182720 |
111 |
| - low, high = -4096, 4096 |
112 |
| - arrs = [np.repeat(np.random.randint(low, high, (n // k)), k) |
113 |
| - for k in [11, 7, 5, 3, 1]] |
114 |
| - self.mi_int = MultiIndex.from_arrays(arrs)[np.random.permutation(n)] |
115 |
| - |
116 |
| - a = np.repeat(np.arange(100), 1000) |
117 |
| - b = np.tile(np.arange(1000), 100) |
118 |
| - self.mi = MultiIndex.from_arrays([a, b]) |
119 |
| - self.mi = self.mi.take(np.random.permutation(np.arange(100000))) |
120 |
| - |
121 |
| - def time_sortlevel_int64(self): |
122 |
| - self.mi_int.sortlevel() |
123 |
| - |
124 |
| - def time_sortlevel_zero(self): |
125 |
| - self.mi.sortlevel(0) |
126 |
| - |
127 |
| - def time_sortlevel_one(self): |
128 |
| - self.mi.sortlevel(1) |
129 |
| - |
130 |
| - |
131 |
| -class MultiIndexValues(object): |
132 |
| - |
133 |
| - goal_time = 0.2 |
134 |
| - |
135 |
| - def setup_cache(self): |
136 |
| - |
137 |
| - level1 = range(1000) |
138 |
| - level2 = date_range(start='1/1/2012', periods=100) |
139 |
| - mi = MultiIndex.from_product([level1, level2]) |
140 |
| - return mi |
141 |
| - |
142 |
| - def time_datetime_level_values_copy(self, mi): |
143 |
| - mi.copy().values |
144 |
| - |
145 |
| - def time_datetime_level_values_sliced(self, mi): |
146 |
| - mi[:10].values |
147 |
| - |
148 |
| - |
149 | 87 | class Range(object):
|
150 | 88 |
|
151 | 89 | goal_time = 0.2
|
@@ -237,76 +175,3 @@ def setup(self):
|
237 | 175 |
|
238 | 176 | def time_get_loc(self):
|
239 | 177 | self.ind.get_loc(0)
|
240 |
| - |
241 |
| - |
242 |
| -class MultiIndexGet(object): |
243 |
| - |
244 |
| - goal_time = 0.2 |
245 |
| - |
246 |
| - def setup(self): |
247 |
| - self.mi_large = MultiIndex.from_product( |
248 |
| - [np.arange(1000), np.arange(20), list(string.ascii_letters)], |
249 |
| - names=['one', 'two', 'three']) |
250 |
| - self.mi_med = MultiIndex.from_product( |
251 |
| - [np.arange(1000), np.arange(10), list('A')], |
252 |
| - names=['one', 'two', 'three']) |
253 |
| - self.mi_small = MultiIndex.from_product( |
254 |
| - [np.arange(100), list('A'), list('A')], |
255 |
| - names=['one', 'two', 'three']) |
256 |
| - |
257 |
| - def time_multiindex_large_get_loc(self): |
258 |
| - self.mi_large.get_loc((999, 19, 'Z')) |
259 |
| - |
260 |
| - def time_multiindex_large_get_loc_warm(self): |
261 |
| - for _ in range(1000): |
262 |
| - self.mi_large.get_loc((999, 19, 'Z')) |
263 |
| - |
264 |
| - def time_multiindex_med_get_loc(self): |
265 |
| - self.mi_med.get_loc((999, 9, 'A')) |
266 |
| - |
267 |
| - def time_multiindex_med_get_loc_warm(self): |
268 |
| - for _ in range(1000): |
269 |
| - self.mi_med.get_loc((999, 9, 'A')) |
270 |
| - |
271 |
| - def time_multiindex_string_get_loc(self): |
272 |
| - self.mi_small.get_loc((99, 'A', 'A')) |
273 |
| - |
274 |
| - def time_multiindex_small_get_loc_warm(self): |
275 |
| - for _ in range(1000): |
276 |
| - self.mi_small.get_loc((99, 'A', 'A')) |
277 |
| - |
278 |
| - |
279 |
| -class MultiIndexDuplicates(object): |
280 |
| - |
281 |
| - goal_time = 0.2 |
282 |
| - |
283 |
| - def setup(self): |
284 |
| - size = 65536 |
285 |
| - arrays = [np.random.randint(0, 8192, size), |
286 |
| - np.random.randint(0, 1024, size)] |
287 |
| - mask = np.random.rand(size) < 0.1 |
288 |
| - self.mi_unused_levels = MultiIndex.from_arrays(arrays) |
289 |
| - self.mi_unused_levels = self.mi_unused_levels[mask] |
290 |
| - |
291 |
| - def time_remove_unused_levels(self): |
292 |
| - self.mi_unused_levels.remove_unused_levels() |
293 |
| - |
294 |
| - |
295 |
| -class MultiIndexInteger(object): |
296 |
| - |
297 |
| - goal_time = 0.2 |
298 |
| - |
299 |
| - def setup(self): |
300 |
| - self.mi_int = MultiIndex.from_product([np.arange(1000), |
301 |
| - np.arange(1000)], |
302 |
| - names=['one', 'two']) |
303 |
| - self.obj_index = np.array([(0, 10), (0, 11), (0, 12), |
304 |
| - (0, 13), (0, 14), (0, 15), |
305 |
| - (0, 16), (0, 17), (0, 18), |
306 |
| - (0, 19)], dtype=object) |
307 |
| - |
308 |
| - def time_get_indexer(self): |
309 |
| - self.mi_int.get_indexer(self.obj_index) |
310 |
| - |
311 |
| - def time_is_monotonic(self): |
312 |
| - self.mi_int.is_monotonic |
0 commit comments