|
1 | 1 | import re
|
2 | 2 |
|
| 3 | +import numpy as np |
3 | 4 | import pytest
|
4 | 5 |
|
| 6 | +from pandas._libs import algos as libalgos, index as libindex |
| 7 | + |
5 | 8 | import pandas as pd
|
| 9 | +import pandas._testing as tm |
| 10 | + |
| 11 | + |
| 12 | +@pytest.fixture( |
| 13 | + params=[ |
| 14 | + (libindex.Int64Engine, np.int64), |
| 15 | + (libindex.Int32Engine, np.int32), |
| 16 | + (libindex.Int16Engine, np.int16), |
| 17 | + (libindex.Int8Engine, np.int8), |
| 18 | + (libindex.UInt64Engine, np.uint64), |
| 19 | + (libindex.UInt32Engine, np.uint32), |
| 20 | + (libindex.UInt16Engine, np.uint16), |
| 21 | + (libindex.UInt8Engine, np.uint8), |
| 22 | + (libindex.Float64Engine, np.float64), |
| 23 | + (libindex.Float32Engine, np.float32), |
| 24 | + ], |
| 25 | + ids=lambda x: x[0].__name__, |
| 26 | +) |
| 27 | +def numeric_indexing_engine_type_and_dtype(request): |
| 28 | + return request.param |
6 | 29 |
|
7 | 30 |
|
8 | 31 | class TestDatetimeEngine:
|
@@ -55,3 +78,161 @@ def test_not_contains_requires_timestamp(self, scalar):
|
55 | 78 |
|
56 | 79 | with pytest.raises(KeyError, match=msg):
|
57 | 80 | tdi._engine.get_loc(scalar)
|
| 81 | + |
| 82 | + |
| 83 | +class TestNumericEngine: |
| 84 | + def test_is_monotonic(self, numeric_indexing_engine_type_and_dtype): |
| 85 | + engine_type, dtype = numeric_indexing_engine_type_and_dtype |
| 86 | + num = 1000 |
| 87 | + arr = np.array([1] * num + [2] * num + [3] * num, dtype=dtype) |
| 88 | + |
| 89 | + # monotonic increasing |
| 90 | + engine = engine_type(lambda: arr, len(arr)) |
| 91 | + assert engine.is_monotonic_increasing is True |
| 92 | + assert engine.is_monotonic_decreasing is False |
| 93 | + |
| 94 | + # monotonic decreasing |
| 95 | + engine = engine_type(lambda: arr[::-1], len(arr)) |
| 96 | + assert engine.is_monotonic_increasing is False |
| 97 | + assert engine.is_monotonic_decreasing is True |
| 98 | + |
| 99 | + # neither monotonic increasing or decreasing |
| 100 | + arr = np.array([1] * num + [2] * num + [1] * num, dtype=dtype) |
| 101 | + engine = engine_type(lambda: arr[::-1], len(arr)) |
| 102 | + assert engine.is_monotonic_increasing is False |
| 103 | + assert engine.is_monotonic_decreasing is False |
| 104 | + |
| 105 | + def test_is_unique(self, numeric_indexing_engine_type_and_dtype): |
| 106 | + engine_type, dtype = numeric_indexing_engine_type_and_dtype |
| 107 | + |
| 108 | + # unique |
| 109 | + arr = np.array([1, 3, 2], dtype=dtype) |
| 110 | + engine = engine_type(lambda: arr, len(arr)) |
| 111 | + assert engine.is_unique is True |
| 112 | + |
| 113 | + # not unique |
| 114 | + arr = np.array([1, 2, 1], dtype=dtype) |
| 115 | + engine = engine_type(lambda: arr, len(arr)) |
| 116 | + assert engine.is_unique is False |
| 117 | + |
| 118 | + def test_get_loc(self, numeric_indexing_engine_type_and_dtype): |
| 119 | + engine_type, dtype = numeric_indexing_engine_type_and_dtype |
| 120 | + |
| 121 | + # unique |
| 122 | + arr = np.array([1, 2, 3], dtype=dtype) |
| 123 | + engine = engine_type(lambda: arr, len(arr)) |
| 124 | + assert engine.get_loc(2) == 1 |
| 125 | + |
| 126 | + # monotonic |
| 127 | + num = 1000 |
| 128 | + arr = np.array([1] * num + [2] * num + [3] * num, dtype=dtype) |
| 129 | + engine = engine_type(lambda: arr, len(arr)) |
| 130 | + assert engine.get_loc(2) == slice(1000, 2000) |
| 131 | + |
| 132 | + # not monotonic |
| 133 | + arr = np.array([1, 2, 3] * num, dtype=dtype) |
| 134 | + engine = engine_type(lambda: arr, len(arr)) |
| 135 | + expected = np.array([False, True, False] * num, dtype=bool) |
| 136 | + result = engine.get_loc(2) |
| 137 | + assert (result == expected).all() |
| 138 | + |
| 139 | + def test_get_backfill_indexer(self, numeric_indexing_engine_type_and_dtype): |
| 140 | + engine_type, dtype = numeric_indexing_engine_type_and_dtype |
| 141 | + |
| 142 | + arr = np.array([1, 5, 10], dtype=dtype) |
| 143 | + engine = engine_type(lambda: arr, len(arr)) |
| 144 | + |
| 145 | + new = np.arange(12, dtype=dtype) |
| 146 | + result = engine.get_backfill_indexer(new) |
| 147 | + |
| 148 | + expected = libalgos.backfill(arr, new) |
| 149 | + tm.assert_numpy_array_equal(result, expected) |
| 150 | + |
| 151 | + def test_get_pad_indexer(self, numeric_indexing_engine_type_and_dtype): |
| 152 | + engine_type, dtype = numeric_indexing_engine_type_and_dtype |
| 153 | + |
| 154 | + arr = np.array([1, 5, 10], dtype=dtype) |
| 155 | + engine = engine_type(lambda: arr, len(arr)) |
| 156 | + |
| 157 | + new = np.arange(12, dtype=dtype) |
| 158 | + result = engine.get_pad_indexer(new) |
| 159 | + |
| 160 | + expected = libalgos.pad(arr, new) |
| 161 | + tm.assert_numpy_array_equal(result, expected) |
| 162 | + |
| 163 | + |
| 164 | +class TestObjectEngine: |
| 165 | + engine_type = libindex.ObjectEngine |
| 166 | + dtype = np.object_ |
| 167 | + values = list("abc") |
| 168 | + |
| 169 | + def test_is_monotonic(self): |
| 170 | + |
| 171 | + num = 1000 |
| 172 | + arr = np.array(["a"] * num + ["a"] * num + ["c"] * num, dtype=self.dtype) |
| 173 | + |
| 174 | + # monotonic increasing |
| 175 | + engine = self.engine_type(lambda: arr, len(arr)) |
| 176 | + assert engine.is_monotonic_increasing is True |
| 177 | + assert engine.is_monotonic_decreasing is False |
| 178 | + |
| 179 | + # monotonic decreasing |
| 180 | + engine = self.engine_type(lambda: arr[::-1], len(arr)) |
| 181 | + assert engine.is_monotonic_increasing is False |
| 182 | + assert engine.is_monotonic_decreasing is True |
| 183 | + |
| 184 | + # neither monotonic increasing or decreasing |
| 185 | + arr = np.array(["a"] * num + ["b"] * num + ["a"] * num, dtype=self.dtype) |
| 186 | + engine = self.engine_type(lambda: arr[::-1], len(arr)) |
| 187 | + assert engine.is_monotonic_increasing is False |
| 188 | + assert engine.is_monotonic_decreasing is False |
| 189 | + |
| 190 | + def test_is_unique(self): |
| 191 | + # unique |
| 192 | + arr = np.array(self.values, dtype=self.dtype) |
| 193 | + engine = self.engine_type(lambda: arr, len(arr)) |
| 194 | + assert engine.is_unique is True |
| 195 | + |
| 196 | + # not unique |
| 197 | + arr = np.array(["a", "b", "a"], dtype=self.dtype) |
| 198 | + engine = self.engine_type(lambda: arr, len(arr)) |
| 199 | + assert engine.is_unique is False |
| 200 | + |
| 201 | + def test_get_loc(self): |
| 202 | + # unique |
| 203 | + arr = np.array(self.values, dtype=self.dtype) |
| 204 | + engine = self.engine_type(lambda: arr, len(arr)) |
| 205 | + assert engine.get_loc("b") == 1 |
| 206 | + |
| 207 | + # monotonic |
| 208 | + num = 1000 |
| 209 | + arr = np.array(["a"] * num + ["b"] * num + ["c"] * num, dtype=self.dtype) |
| 210 | + engine = self.engine_type(lambda: arr, len(arr)) |
| 211 | + assert engine.get_loc("b") == slice(1000, 2000) |
| 212 | + |
| 213 | + # not monotonic |
| 214 | + arr = np.array(self.values * num, dtype=self.dtype) |
| 215 | + engine = self.engine_type(lambda: arr, len(arr)) |
| 216 | + expected = np.array([False, True, False] * num, dtype=bool) |
| 217 | + result = engine.get_loc("b") |
| 218 | + assert (result == expected).all() |
| 219 | + |
| 220 | + def test_get_backfill_indexer(self): |
| 221 | + arr = np.array(["a", "e", "j"], dtype=self.dtype) |
| 222 | + engine = self.engine_type(lambda: arr, len(arr)) |
| 223 | + |
| 224 | + new = np.array(list("abcdefghij"), dtype=self.dtype) |
| 225 | + result = engine.get_backfill_indexer(new) |
| 226 | + |
| 227 | + expected = libalgos.backfill["object"](arr, new) |
| 228 | + tm.assert_numpy_array_equal(result, expected) |
| 229 | + |
| 230 | + def test_get_pad_indexer(self): |
| 231 | + arr = np.array(["a", "e", "j"], dtype=self.dtype) |
| 232 | + engine = self.engine_type(lambda: arr, len(arr)) |
| 233 | + |
| 234 | + new = np.array(list("abcdefghij"), dtype=self.dtype) |
| 235 | + result = engine.get_pad_indexer(new) |
| 236 | + |
| 237 | + expected = libalgos.pad["object"](arr, new) |
| 238 | + tm.assert_numpy_array_equal(result, expected) |
0 commit comments