@@ -329,16 +329,11 @@ def time_different_str_functions(self, df):
329
329
{"value1" : "mean" , "value2" : "var" , "value3" : "sum" }
330
330
)
331
331
332
- def time_different_numpy_functions (self , df ):
333
- df .groupby (["key1" , "key2" ]).agg (
334
- {"value1" : np .mean , "value2" : np .var , "value3" : np .sum }
335
- )
336
-
337
- def time_different_python_functions_multicol (self , df ):
338
- df .groupby (["key1" , "key2" ]).agg ([sum , min , max ])
332
+ def time_different_str_functions_multicol (self , df ):
333
+ df .groupby (["key1" , "key2" ]).agg (["sum" , "min" , "max" ])
339
334
340
- def time_different_python_functions_singlecol (self , df ):
341
- df .groupby ("key1" )[[ "value1" , "value2" , "value3" ]]. agg ([ sum , min , max ] )
335
+ def time_different_str_functions_singlecol (self , df ):
336
+ df .groupby ("key1" ). agg ({ "value1" : "mean" , "value2" : "var" , "value3" : "sum" } )
342
337
343
338
344
339
class GroupStrings :
@@ -381,8 +376,8 @@ def time_cython_sum(self, df):
381
376
def time_col_select_lambda_sum (self , df ):
382
377
df .groupby (["key1" , "key2" ])["data1" ].agg (lambda x : x .values .sum ())
383
378
384
- def time_col_select_numpy_sum (self , df ):
385
- df .groupby (["key1" , "key2" ])["data1" ].agg (np . sum )
379
+ def time_col_select_str_sum (self , df ):
380
+ df .groupby (["key1" , "key2" ])["data1" ].agg (" sum" )
386
381
387
382
388
383
class Size :
@@ -894,8 +889,8 @@ def setup(self):
894
889
def time_transform_lambda_max (self ):
895
890
self .df .groupby (level = "lev1" ).transform (lambda x : max (x ))
896
891
897
- def time_transform_ufunc_max (self ):
898
- self .df .groupby (level = "lev1" ).transform (np . max )
892
+ def time_transform_str_max (self ):
893
+ self .df .groupby (level = "lev1" ).transform (" max" )
899
894
900
895
def time_transform_lambda_max_tall (self ):
901
896
self .df_tall .groupby (level = 0 ).transform (lambda x : np .max (x , axis = 0 ))
@@ -926,7 +921,7 @@ def setup(self):
926
921
self .df = DataFrame ({"signal" : np .random .rand (N )})
927
922
928
923
def time_transform_mean (self ):
929
- self .df ["signal" ].groupby (self .g ).transform (np . mean )
924
+ self .df ["signal" ].groupby (self .g ).transform (" mean" )
930
925
931
926
932
927
class TransformNaN :
0 commit comments