Skip to content

Commit 41ab6af

Browse files
authored
CLN/ASV: Remove NumPy/built-in aliases in ASVs (#54316)
* CLN/ASV: Remove NumPy/built-in aliases in ASVs * one more * Refinements
1 parent fe1a81e commit 41ab6af

File tree

3 files changed

+13
-18
lines changed

3 files changed

+13
-18
lines changed

asv_bench/benchmarks/frame_methods.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -545,8 +545,8 @@ def time_apply_axis_1(self):
545545
def time_apply_lambda_mean(self):
546546
self.df.apply(lambda x: x.mean())
547547

548-
def time_apply_np_mean(self):
549-
self.df.apply(np.mean)
548+
def time_apply_str_mean(self):
549+
self.df.apply("mean")
550550

551551
def time_apply_pass_thru(self):
552552
self.df.apply(lambda x: x)

asv_bench/benchmarks/groupby.py

+9-14
Original file line numberDiff line numberDiff line change
@@ -329,16 +329,11 @@ def time_different_str_functions(self, df):
329329
{"value1": "mean", "value2": "var", "value3": "sum"}
330330
)
331331

332-
def time_different_numpy_functions(self, df):
333-
df.groupby(["key1", "key2"]).agg(
334-
{"value1": np.mean, "value2": np.var, "value3": np.sum}
335-
)
336-
337-
def time_different_python_functions_multicol(self, df):
338-
df.groupby(["key1", "key2"]).agg([sum, min, max])
332+
def time_different_str_functions_multicol(self, df):
333+
df.groupby(["key1", "key2"]).agg(["sum", "min", "max"])
339334

340-
def time_different_python_functions_singlecol(self, df):
341-
df.groupby("key1")[["value1", "value2", "value3"]].agg([sum, min, max])
335+
def time_different_str_functions_singlecol(self, df):
336+
df.groupby("key1").agg({"value1": "mean", "value2": "var", "value3": "sum"})
342337

343338

344339
class GroupStrings:
@@ -381,8 +376,8 @@ def time_cython_sum(self, df):
381376
def time_col_select_lambda_sum(self, df):
382377
df.groupby(["key1", "key2"])["data1"].agg(lambda x: x.values.sum())
383378

384-
def time_col_select_numpy_sum(self, df):
385-
df.groupby(["key1", "key2"])["data1"].agg(np.sum)
379+
def time_col_select_str_sum(self, df):
380+
df.groupby(["key1", "key2"])["data1"].agg("sum")
386381

387382

388383
class Size:
@@ -894,8 +889,8 @@ def setup(self):
894889
def time_transform_lambda_max(self):
895890
self.df.groupby(level="lev1").transform(lambda x: max(x))
896891

897-
def time_transform_ufunc_max(self):
898-
self.df.groupby(level="lev1").transform(np.max)
892+
def time_transform_str_max(self):
893+
self.df.groupby(level="lev1").transform("max")
899894

900895
def time_transform_lambda_max_tall(self):
901896
self.df_tall.groupby(level=0).transform(lambda x: np.max(x, axis=0))
@@ -926,7 +921,7 @@ def setup(self):
926921
self.df = DataFrame({"signal": np.random.rand(N)})
927922

928923
def time_transform_mean(self):
929-
self.df["signal"].groupby(self.g).transform(np.mean)
924+
self.df["signal"].groupby(self.g).transform("mean")
930925

931926

932927
class TransformNaN:

asv_bench/benchmarks/reshape.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -218,15 +218,15 @@ def time_pivot_table_margins(self):
218218

219219
def time_pivot_table_categorical(self):
220220
self.df2.pivot_table(
221-
index="col1", values="col3", columns="col2", aggfunc=np.sum, fill_value=0
221+
index="col1", values="col3", columns="col2", aggfunc="sum", fill_value=0
222222
)
223223

224224
def time_pivot_table_categorical_observed(self):
225225
self.df2.pivot_table(
226226
index="col1",
227227
values="col3",
228228
columns="col2",
229-
aggfunc=np.sum,
229+
aggfunc="sum",
230230
fill_value=0,
231231
observed=True,
232232
)

0 commit comments

Comments
 (0)