Skip to content

Commit 7a45f5b

Browse files
committed
🎨 share docs
1 parent 00c9b2d commit 7a45f5b

File tree

1 file changed

+75
-115
lines changed

1 file changed

+75
-115
lines changed

pandas/plotting/_core.py

+75-115
Original file line numberDiff line numberDiff line change
@@ -386,6 +386,45 @@ def hist_frame(
386386
"""
387387

388388

389+
_bar_or_line_doc = """\
390+
Parameters
391+
----------
392+
x : label or position, optional
393+
Allows plotting of one column versus another. If not specified,
394+
the index of the DataFrame is used.
395+
y : label or position, optional
396+
Allows plotting of one column versus another. If not specified,
397+
all numerical columns are used.
398+
color : str, array_like, or dict, optional
399+
The color for each of the DataFrame's columns. Possible values are:
400+
401+
- A single color string referred to by name, RGB or RGBA code,
402+
for instance 'red' or '#a98d19'.
403+
404+
- A sequence of color strings referred to by name, RGB or RGBA
405+
code, which will be used for each column recursively. For
406+
instance ['green','yellow'] each column's %(kind)s will be filled in
407+
green or yellow, alternatively.
408+
409+
- A dict of the form {column name : color}, so that each column will be
410+
colored accordingly. For example, if your columns are called `a` and `b`,
411+
then passing {'a': 'green', 'b': 'red'} will color %(kind)ss for column `a` in
412+
green and %(kind)ss for column `b` in red.
413+
414+
.. versionadded:: 1.1.0
415+
416+
**kwargs
417+
Additional keyword arguments are documented in
418+
:meth:`DataFrame.plot`.
419+
420+
Returns
421+
-------
422+
matplotlib.axes.Axes or np.ndarray of them
423+
An ndarray is returned with one :class:`matplotlib.axes.Axes`
424+
per column when ``subplots=True``.
425+
"""
426+
427+
389428
@Substitution(backend="")
390429
@Appender(_boxplot_doc)
391430
def boxplot(
@@ -847,46 +886,8 @@ def __call__(self, *args, **kwargs):
847886

848887
return plot_backend.plot(data, kind=kind, **kwargs)
849888

850-
def line(self, x=None, y=None, **kwargs):
889+
@Appender(
851890
"""
852-
Plot Series or DataFrame as lines.
853-
854-
This function is useful to plot lines using DataFrame's values
855-
as coordinates.
856-
857-
Parameters
858-
----------
859-
x : int or str, optional
860-
Columns to use for the horizontal axis.
861-
Either the location or the label of the columns to be used.
862-
By default, it will use the DataFrame indices.
863-
y : int, str, or list of them, optional
864-
The values to be plotted.
865-
Either the location or the label of the columns to be used.
866-
By default, it will use the remaining DataFrame numeric columns.
867-
color : str, int, array_like, or dict, optional
868-
The color for each of the DataFrame's columns. Possible values are:
869-
870-
- A single color string referred to by name, RGB or RGBA code,
871-
for instance 'red' or '#a98d19'.
872-
873-
- A sequence of color strings referred to by name, RGB or RGBA
874-
code, which will be used for each column recursively. For
875-
instance ['green','yellow'] each column's line will be coloured in
876-
green or yellow, alternatively.
877-
878-
- A dict of the form {column name : color}, so that each column will be
879-
colored accordingly. For example, if your columns are called `a` and `b`,
880-
then passing {'a': 'green', 'b': 'red'} will color lines for column `a` in
881-
green and lines for column `b` in red.
882-
**kwargs
883-
Keyword arguments to pass on to :meth:`DataFrame.plot`.
884-
885-
Returns
886-
-------
887-
:class:`matplotlib.axes.Axes` or :class:`numpy.ndarray`
888-
Return an ndarray when ``subplots=True``.
889-
890891
See Also
891892
--------
892893
matplotlib.pyplot.plot : Plot y versus x as lines and/or markers.
@@ -939,51 +940,20 @@ def line(self, x=None, y=None, **kwargs):
939940
940941
>>> lines = df.plot.line(x='pig', y='horse')
941942
"""
942-
return self(kind="line", x=x, y=y, **kwargs)
943-
944-
def bar(self, x=None, y=None, **kwargs):
943+
)
944+
@Substitution(kind="line")
945+
@Appender(_bar_or_line_doc)
946+
def line(self, x=None, y=None, **kwargs):
945947
"""
946-
Vertical bar plot.
947-
948-
A bar plot is a plot that presents categorical data with
949-
rectangular bars with lengths proportional to the values that they
950-
represent. A bar plot shows comparisons among discrete categories. One
951-
axis of the plot shows the specific categories being compared, and the
952-
other axis represents a measured value.
953-
954-
Parameters
955-
----------
956-
x : label or position, optional
957-
Allows plotting of one column versus another. If not specified,
958-
the index of the DataFrame is used.
959-
y : label or position, optional
960-
Allows plotting of one column versus another. If not specified,
961-
all numerical columns are used.
962-
color : str, int, array_like, or dict, optional
963-
The color for each of the DataFrame's columns. Possible values are:
964-
965-
- A single color string referred to by name, RGB or RGBA code,
966-
for instance 'red' or '#a98d19'.
967-
968-
- A sequence of color strings referred to by name, RGB or RGBA
969-
code, which will be used for each column recursively. For
970-
instance ['green','yellow'] each column's bar will be filled in
971-
green or yellow, alternatively.
972-
973-
- A dict of the form {column name : color}, so that each column will be
974-
colored accordingly. For example, if your columns are called `a` and `b`,
975-
then passing {'a': 'green', 'b': 'red'} will color bars for column `a` in
976-
green and bars for column `b` in red.
977-
**kwargs
978-
Additional keyword arguments are documented in
979-
:meth:`DataFrame.plot`.
948+
Plot Series or DataFrame as lines.
980949
981-
Returns
982-
-------
983-
matplotlib.axes.Axes or np.ndarray of them
984-
An ndarray is returned with one :class:`matplotlib.axes.Axes`
985-
per column when ``subplots=True``.
950+
This function is useful to plot lines using DataFrame's values
951+
as coordinates.
952+
"""
953+
return self(kind="line", x=x, y=y, **kwargs)
986954

955+
@Appender(
956+
"""
987957
See Also
988958
--------
989959
DataFrame.plot.barh : Horizontal bar plot.
@@ -1049,47 +1019,24 @@ def bar(self, x=None, y=None, **kwargs):
10491019
:context: close-figs
10501020
10511021
>>> ax = df.plot.bar(x='lifespan', rot=0)
1022+
"""
1023+
)
1024+
@Substitution(kind="bar")
1025+
@Appender(_bar_or_line_doc)
1026+
def bar(self, x=None, y=None, **kwargs):
10521027
"""
1053-
return self(kind="bar", x=x, y=y, **kwargs)
1054-
1055-
def barh(self, x=None, y=None, **kwargs):
1056-
"""
1057-
Make a horizontal bar plot.
1028+
Vertical bar plot.
10581029
1059-
A horizontal bar plot is a plot that presents quantitative data with
1030+
A bar plot is a plot that presents categorical data with
10601031
rectangular bars with lengths proportional to the values that they
10611032
represent. A bar plot shows comparisons among discrete categories. One
10621033
axis of the plot shows the specific categories being compared, and the
10631034
other axis represents a measured value.
1035+
"""
1036+
return self(kind="bar", x=x, y=y, **kwargs)
10641037

1065-
Parameters
1066-
----------
1067-
x : label or position, default DataFrame.index
1068-
Column to be used for categories.
1069-
y : label or position, default All numeric columns in dataframe
1070-
Columns to be plotted from the DataFrame.
1071-
color : str, int, array_like, or dict, optional
1072-
The color for each of the DataFrame's columns. Possible values are:
1073-
1074-
- A single color string referred to by name, RGB or RGBA code,
1075-
for instance 'red' or '#a98d19'.
1076-
1077-
- A sequence of color strings referred to by name, RGB or RGBA
1078-
code, which will be used for each column recursively. For
1079-
instance ['green','yellow'] each column's bar will be filled in
1080-
green or yellow, alternatively.
1081-
1082-
- A dict of the form {column name : color}, so that each column will be
1083-
colored accordingly. For example, if your columns are called `a` and `b`,
1084-
then passing {'a': 'green', 'b': 'red'} will color bars for column `a` in
1085-
green and bars for column `b` in red.
1086-
**kwargs
1087-
Keyword arguments to pass on to :meth:`DataFrame.plot`.
1088-
1089-
Returns
1090-
-------
1091-
:class:`matplotlib.axes.Axes` or numpy.ndarray of them
1092-
1038+
@Appender(
1039+
"""
10931040
See Also
10941041
--------
10951042
DataFrame.plot.bar: Vertical bar plot.
@@ -1151,6 +1098,19 @@ def barh(self, x=None, y=None, **kwargs):
11511098
>>> df = pd.DataFrame({'speed': speed,
11521099
... 'lifespan': lifespan}, index=index)
11531100
>>> ax = df.plot.barh(x='lifespan')
1101+
"""
1102+
)
1103+
@Substitution(kind="bar")
1104+
@Appender(_bar_or_line_doc)
1105+
def barh(self, x=None, y=None, **kwargs):
1106+
"""
1107+
Make a horizontal bar plot.
1108+
1109+
A horizontal bar plot is a plot that presents quantitative data with
1110+
rectangular bars with lengths proportional to the values that they
1111+
represent. A bar plot shows comparisons among discrete categories. One
1112+
axis of the plot shows the specific categories being compared, and the
1113+
other axis represents a measured value.
11541114
"""
11551115
return self(kind="barh", x=x, y=y, **kwargs)
11561116

0 commit comments

Comments
 (0)