Skip to content

Commit a71f49a

Browse files
author
Marco Gorelli
committed
🔀 fix conflict
1 parent 08a63fb commit a71f49a

File tree

1 file changed

+75
-115
lines changed

1 file changed

+75
-115
lines changed

pandas/plotting/_core.py

+75-115
Original file line numberDiff line numberDiff line change
@@ -385,6 +385,45 @@ def hist_frame(
385385
"""
386386

387387

388+
_bar_or_line_doc = """
389+
Parameters
390+
----------
391+
x : label or position, optional
392+
Allows plotting of one column versus another. If not specified,
393+
the index of the DataFrame is used.
394+
y : label or position, optional
395+
Allows plotting of one column versus another. If not specified,
396+
all numerical columns are used.
397+
color : str, array_like, or dict, optional
398+
The color for each of the DataFrame's columns. Possible values are:
399+
400+
- A single color string referred to by name, RGB or RGBA code,
401+
for instance 'red' or '#a98d19'.
402+
403+
- A sequence of color strings referred to by name, RGB or RGBA
404+
code, which will be used for each column recursively. For
405+
instance ['green','yellow'] each column's %(kind)s will be filled in
406+
green or yellow, alternatively.
407+
408+
- A dict of the form {column name : color}, so that each column will be
409+
colored accordingly. For example, if your columns are called `a` and
410+
`b`, then passing {'a': 'green', 'b': 'red'} will color %(kind)ss for
411+
column `a` in green and %(kind)ss for column `b` in red.
412+
413+
.. versionadded:: 1.1.0
414+
415+
**kwargs
416+
Additional keyword arguments are documented in
417+
:meth:`DataFrame.plot`.
418+
419+
Returns
420+
-------
421+
matplotlib.axes.Axes or np.ndarray of them
422+
An ndarray is returned with one :class:`matplotlib.axes.Axes`
423+
per column when ``subplots=True``.
424+
"""
425+
426+
388427
@Substitution(backend="")
389428
@Appender(_boxplot_doc)
390429
def boxplot(
@@ -848,46 +887,8 @@ def __call__(self, *args, **kwargs):
848887

849888
__call__.__doc__ = __doc__
850889

851-
def line(self, x=None, y=None, **kwargs):
890+
@Appender(
852891
"""
853-
Plot Series or DataFrame as lines.
854-
855-
This function is useful to plot lines using DataFrame's values
856-
as coordinates.
857-
858-
Parameters
859-
----------
860-
x : int or str, optional
861-
Columns to use for the horizontal axis.
862-
Either the location or the label of the columns to be used.
863-
By default, it will use the DataFrame indices.
864-
y : int, str, or list of them, optional
865-
The values to be plotted.
866-
Either the location or the label of the columns to be used.
867-
By default, it will use the remaining DataFrame numeric columns.
868-
color : str, int, array_like, or dict, optional
869-
The color for each of the DataFrame's columns. Possible values are:
870-
871-
- A single color string referred to by name, RGB or RGBA code,
872-
for instance 'red' or '#a98d19'.
873-
874-
- A sequence of color strings referred to by name, RGB or RGBA
875-
code, which will be used for each column recursively. For
876-
instance ['green','yellow'] each column's line will be coloured in
877-
green or yellow, alternatively.
878-
879-
- A dict of the form {column name : color}, so that each column will be
880-
colored accordingly. For example, if your columns are called `a` and `b`,
881-
then passing {'a': 'green', 'b': 'red'} will color lines for column `a` in
882-
green and lines for column `b` in red.
883-
**kwargs
884-
Keyword arguments to pass on to :meth:`DataFrame.plot`.
885-
886-
Returns
887-
-------
888-
:class:`matplotlib.axes.Axes` or :class:`numpy.ndarray`
889-
Return an ndarray when ``subplots=True``.
890-
891892
See Also
892893
--------
893894
matplotlib.pyplot.plot : Plot y versus x as lines and/or markers.
@@ -940,51 +941,20 @@ def line(self, x=None, y=None, **kwargs):
940941
941942
>>> lines = df.plot.line(x='pig', y='horse')
942943
"""
943-
return self(kind="line", x=x, y=y, **kwargs)
944-
945-
def bar(self, x=None, y=None, **kwargs):
944+
)
945+
@Substitution(kind="line")
946+
@Appender(_bar_or_line_doc)
947+
def line(self, x=None, y=None, **kwargs):
946948
"""
947-
Vertical bar plot.
948-
949-
A bar plot is a plot that presents categorical data with
950-
rectangular bars with lengths proportional to the values that they
951-
represent. A bar plot shows comparisons among discrete categories. One
952-
axis of the plot shows the specific categories being compared, and the
953-
other axis represents a measured value.
954-
955-
Parameters
956-
----------
957-
x : label or position, optional
958-
Allows plotting of one column versus another. If not specified,
959-
the index of the DataFrame is used.
960-
y : label or position, optional
961-
Allows plotting of one column versus another. If not specified,
962-
all numerical columns are used.
963-
color : str, int, array_like, or dict, optional
964-
The color for each of the DataFrame's columns. Possible values are:
965-
966-
- A single color string referred to by name, RGB or RGBA code,
967-
for instance 'red' or '#a98d19'.
968-
969-
- A sequence of color strings referred to by name, RGB or RGBA
970-
code, which will be used for each column recursively. For
971-
instance ['green','yellow'] each column's bar will be filled in
972-
green or yellow, alternatively.
973-
974-
- A dict of the form {column name : color}, so that each column will be
975-
colored accordingly. For example, if your columns are called `a` and `b`,
976-
then passing {'a': 'green', 'b': 'red'} will color bars for column `a` in
977-
green and bars for column `b` in red.
978-
**kwargs
979-
Additional keyword arguments are documented in
980-
:meth:`DataFrame.plot`.
949+
Plot Series or DataFrame as lines.
981950
982-
Returns
983-
-------
984-
matplotlib.axes.Axes or np.ndarray of them
985-
An ndarray is returned with one :class:`matplotlib.axes.Axes`
986-
per column when ``subplots=True``.
951+
This function is useful to plot lines using DataFrame's values
952+
as coordinates.
953+
"""
954+
return self(kind="line", x=x, y=y, **kwargs)
987955

956+
@Appender(
957+
"""
988958
See Also
989959
--------
990960
DataFrame.plot.barh : Horizontal bar plot.
@@ -1050,47 +1020,24 @@ def bar(self, x=None, y=None, **kwargs):
10501020
:context: close-figs
10511021
10521022
>>> ax = df.plot.bar(x='lifespan', rot=0)
1023+
"""
1024+
)
1025+
@Substitution(kind="bar")
1026+
@Appender(_bar_or_line_doc)
1027+
def bar(self, x=None, y=None, **kwargs):
10531028
"""
1054-
return self(kind="bar", x=x, y=y, **kwargs)
1055-
1056-
def barh(self, x=None, y=None, **kwargs):
1057-
"""
1058-
Make a horizontal bar plot.
1029+
Vertical bar plot.
10591030
1060-
A horizontal bar plot is a plot that presents quantitative data with
1031+
A bar plot is a plot that presents categorical data with
10611032
rectangular bars with lengths proportional to the values that they
10621033
represent. A bar plot shows comparisons among discrete categories. One
10631034
axis of the plot shows the specific categories being compared, and the
10641035
other axis represents a measured value.
1036+
"""
1037+
return self(kind="bar", x=x, y=y, **kwargs)
10651038

1066-
Parameters
1067-
----------
1068-
x : label or position, default DataFrame.index
1069-
Column to be used for categories.
1070-
y : label or position, default All numeric columns in dataframe
1071-
Columns to be plotted from the DataFrame.
1072-
color : str, int, array_like, or dict, optional
1073-
The color for each of the DataFrame's columns. Possible values are:
1074-
1075-
- A single color string referred to by name, RGB or RGBA code,
1076-
for instance 'red' or '#a98d19'.
1077-
1078-
- A sequence of color strings referred to by name, RGB or RGBA
1079-
code, which will be used for each column recursively. For
1080-
instance ['green','yellow'] each column's bar will be filled in
1081-
green or yellow, alternatively.
1082-
1083-
- A dict of the form {column name : color}, so that each column will be
1084-
colored accordingly. For example, if your columns are called `a` and `b`,
1085-
then passing {'a': 'green', 'b': 'red'} will color bars for column `a` in
1086-
green and bars for column `b` in red.
1087-
**kwargs
1088-
Keyword arguments to pass on to :meth:`DataFrame.plot`.
1089-
1090-
Returns
1091-
-------
1092-
:class:`matplotlib.axes.Axes` or numpy.ndarray of them
1093-
1039+
@Appender(
1040+
"""
10941041
See Also
10951042
--------
10961043
DataFrame.plot.bar: Vertical bar plot.
@@ -1152,6 +1099,19 @@ def barh(self, x=None, y=None, **kwargs):
11521099
>>> df = pd.DataFrame({'speed': speed,
11531100
... 'lifespan': lifespan}, index=index)
11541101
>>> ax = df.plot.barh(x='lifespan')
1102+
"""
1103+
)
1104+
@Substitution(kind="bar")
1105+
@Appender(_bar_or_line_doc)
1106+
def barh(self, x=None, y=None, **kwargs):
1107+
"""
1108+
Make a horizontal bar plot.
1109+
1110+
A horizontal bar plot is a plot that presents quantitative data with
1111+
rectangular bars with lengths proportional to the values that they
1112+
represent. A bar plot shows comparisons among discrete categories. One
1113+
axis of the plot shows the specific categories being compared, and the
1114+
other axis represents a measured value.
11551115
"""
11561116
return self(kind="barh", x=x, y=y, **kwargs)
11571117

0 commit comments

Comments
 (0)