|
7 | 7 |
|
8 | 8 | import numpy as np
|
9 | 9 |
|
10 |
| -from pandas._libs import algos, tslibs |
| 10 | +from pandas._libs import tslibs |
11 | 11 | from pandas._libs.tslibs import NaT, Timedelta, Timestamp, iNaT
|
12 | 12 | from pandas._libs.tslibs.fields import get_timedelta_field
|
13 | 13 | from pandas._libs.tslibs.timedeltas import (
|
|
24 | 24 | from pandas.core.dtypes.missing import isna
|
25 | 25 |
|
26 | 26 | from pandas.core import ops
|
27 |
| -from pandas.core.algorithms import checked_add_with_arr, unique1d |
| 27 | +from pandas.core.algorithms import checked_add_with_arr |
28 | 28 | import pandas.core.common as com
|
29 | 29 |
|
30 | 30 | from pandas.tseries.frequencies import to_offset
|
@@ -241,22 +241,6 @@ def _validate_fill_value(self, fill_value):
|
241 | 241 | "Got '{got}'.".format(got=fill_value))
|
242 | 242 | return fill_value
|
243 | 243 |
|
244 |
| - # is_monotonic_increasing, is_monotonic_decreasing, and is_unique |
245 |
| - # are needed by `frequencies.infer_freq`, which is called when accessing |
246 |
| - # the `inferred_freq` property inside the TimedeltaArray constructor |
247 |
| - |
248 |
| - @property # NB: override with cache_readonly in immutable subclasses |
249 |
| - def is_monotonic_increasing(self): |
250 |
| - return algos.is_monotonic(self.asi8, timelike=True)[0] |
251 |
| - |
252 |
| - @property # NB: override with cache_readonly in immutable subclasses |
253 |
| - def is_monotonic_decreasing(self): |
254 |
| - return algos.is_monotonic(self.asi8, timelike=True)[1] |
255 |
| - |
256 |
| - @property # NB: override with cache_readonly in immutable subclasses |
257 |
| - def is_unique(self): |
258 |
| - return len(unique1d(self.asi8)) == len(self) |
259 |
| - |
260 | 244 | # ----------------------------------------------------------------
|
261 | 245 | # Arithmetic Methods
|
262 | 246 |
|
|
0 commit comments