Skip to content

Commit c5d0d13

Browse files
authored
CLN/TST: normalize test_frame_apply (#40113)
1 parent a13a95f commit c5d0d13

File tree

1 file changed

+71
-67
lines changed

1 file changed

+71
-67
lines changed

pandas/tests/apply/test_frame_apply.py

+71-67
Original file line numberDiff line numberDiff line change
@@ -38,17 +38,20 @@ def int_frame_const_col():
3838
def test_apply(float_frame):
3939
with np.errstate(all="ignore"):
4040
# ufunc
41-
applied = float_frame.apply(np.sqrt)
42-
tm.assert_series_equal(np.sqrt(float_frame["A"]), applied["A"])
41+
result = np.sqrt(float_frame["A"])
42+
expected = float_frame.apply(np.sqrt)["A"]
43+
tm.assert_series_equal(result, expected)
4344

4445
# aggregator
45-
applied = float_frame.apply(np.mean)
46-
assert applied["A"] == np.mean(float_frame["A"])
46+
result = float_frame.apply(np.mean)["A"]
47+
expected = np.mean(float_frame["A"])
48+
assert result == expected
4749

4850
d = float_frame.index[0]
49-
applied = float_frame.apply(np.mean, axis=1)
50-
assert applied[d] == np.mean(float_frame.xs(d))
51-
assert applied.index is float_frame.index # want this
51+
result = float_frame.apply(np.mean, axis=1)
52+
expected = np.mean(float_frame.xs(d))
53+
assert result[d] == expected
54+
assert result.index is float_frame.index
5255

5356
# invalid axis
5457
df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=["a", "a", "c"])
@@ -58,42 +61,42 @@ def test_apply(float_frame):
5861

5962
# GH 9573
6063
df = DataFrame({"c0": ["A", "A", "B", "B"], "c1": ["C", "C", "D", "D"]})
61-
df = df.apply(lambda ts: ts.astype("category"))
64+
result = df.apply(lambda ts: ts.astype("category"))
6265

63-
assert df.shape == (4, 2)
64-
assert isinstance(df["c0"].dtype, CategoricalDtype)
65-
assert isinstance(df["c1"].dtype, CategoricalDtype)
66+
assert result.shape == (4, 2)
67+
assert isinstance(result["c0"].dtype, CategoricalDtype)
68+
assert isinstance(result["c1"].dtype, CategoricalDtype)
6669

6770

6871
def test_apply_axis1_with_ea():
6972
# GH#36785
70-
df = DataFrame({"A": [Timestamp("2013-01-01", tz="UTC")]})
71-
result = df.apply(lambda x: x, axis=1)
72-
tm.assert_frame_equal(result, df)
73+
expected = DataFrame({"A": [Timestamp("2013-01-01", tz="UTC")]})
74+
result = expected.apply(lambda x: x, axis=1)
75+
tm.assert_frame_equal(result, expected)
7376

7477

7578
def test_apply_mixed_datetimelike():
7679
# mixed datetimelike
7780
# GH 7778
78-
df = DataFrame(
81+
expected = DataFrame(
7982
{
8083
"A": date_range("20130101", periods=3),
8184
"B": pd.to_timedelta(np.arange(3), unit="s"),
8285
}
8386
)
84-
result = df.apply(lambda x: x, axis=1)
85-
tm.assert_frame_equal(result, df)
87+
result = expected.apply(lambda x: x, axis=1)
88+
tm.assert_frame_equal(result, expected)
8689

8790

8891
def test_apply_empty(float_frame):
8992
# empty
9093
empty_frame = DataFrame()
9194

92-
applied = empty_frame.apply(np.sqrt)
93-
assert applied.empty
95+
result = empty_frame.apply(np.sqrt)
96+
assert result.empty
9497

95-
applied = empty_frame.apply(np.mean)
96-
assert applied.empty
98+
result = empty_frame.apply(np.mean)
99+
assert result.empty
97100

98101
no_rows = float_frame[:0]
99102
result = no_rows.apply(lambda x: x.mean())
@@ -108,7 +111,7 @@ def test_apply_empty(float_frame):
108111
# GH 2476
109112
expected = DataFrame(index=["a"])
110113
result = expected.apply(lambda x: x["a"], axis=1)
111-
tm.assert_frame_equal(expected, result)
114+
tm.assert_frame_equal(result, expected)
112115

113116

114117
def test_apply_with_reduce_empty():
@@ -285,14 +288,13 @@ def _assert_raw(x):
285288
float_frame.apply(_assert_raw, raw=True)
286289
float_frame.apply(_assert_raw, axis=1, raw=True)
287290

288-
result0 = float_frame.apply(np.mean, raw=True)
289-
result1 = float_frame.apply(np.mean, axis=1, raw=True)
290-
291-
expected0 = float_frame.apply(lambda x: x.values.mean())
292-
expected1 = float_frame.apply(lambda x: x.values.mean(), axis=1)
291+
result = float_frame.apply(np.mean, raw=True)
292+
expected = float_frame.apply(lambda x: x.values.mean())
293+
tm.assert_series_equal(result, expected)
293294

294-
tm.assert_series_equal(result0, expected0)
295-
tm.assert_series_equal(result1, expected1)
295+
result = float_frame.apply(np.mean, axis=1, raw=True)
296+
expected = float_frame.apply(lambda x: x.values.mean(), axis=1)
297+
tm.assert_series_equal(result, expected)
296298

297299
# no reduction
298300
result = float_frame.apply(lambda x: x * 2, raw=True)
@@ -306,8 +308,9 @@ def _assert_raw(x):
306308

307309
def test_apply_axis1(float_frame):
308310
d = float_frame.index[0]
309-
tapplied = float_frame.apply(np.mean, axis=1)
310-
assert tapplied[d] == np.mean(float_frame.xs(d))
311+
result = float_frame.apply(np.mean, axis=1)[d]
312+
expected = np.mean(float_frame.xs(d))
313+
assert result == expected
311314

312315

313316
def test_apply_mixed_dtype_corner():
@@ -401,27 +404,25 @@ def test_apply_reduce_to_dict():
401404
# GH 25196 37544
402405
data = DataFrame([[1, 2], [3, 4]], columns=["c0", "c1"], index=["i0", "i1"])
403406

404-
result0 = data.apply(dict, axis=0)
405-
expected0 = Series([{"i0": 1, "i1": 3}, {"i0": 2, "i1": 4}], index=data.columns)
406-
tm.assert_series_equal(result0, expected0)
407+
result = data.apply(dict, axis=0)
408+
expected = Series([{"i0": 1, "i1": 3}, {"i0": 2, "i1": 4}], index=data.columns)
409+
tm.assert_series_equal(result, expected)
407410

408-
result1 = data.apply(dict, axis=1)
409-
expected1 = Series([{"c0": 1, "c1": 2}, {"c0": 3, "c1": 4}], index=data.index)
410-
tm.assert_series_equal(result1, expected1)
411+
result = data.apply(dict, axis=1)
412+
expected = Series([{"c0": 1, "c1": 2}, {"c0": 3, "c1": 4}], index=data.index)
413+
tm.assert_series_equal(result, expected)
411414

412415

413416
def test_apply_differently_indexed():
414417
df = DataFrame(np.random.randn(20, 10))
415418

416-
result0 = df.apply(Series.describe, axis=0)
417-
expected0 = DataFrame({i: v.describe() for i, v in df.items()}, columns=df.columns)
418-
tm.assert_frame_equal(result0, expected0)
419+
result = df.apply(Series.describe, axis=0)
420+
expected = DataFrame({i: v.describe() for i, v in df.items()}, columns=df.columns)
421+
tm.assert_frame_equal(result, expected)
419422

420-
result1 = df.apply(Series.describe, axis=1)
421-
expected1 = DataFrame(
422-
{i: v.describe() for i, v in df.T.items()}, columns=df.index
423-
).T
424-
tm.assert_frame_equal(result1, expected1)
423+
result = df.apply(Series.describe, axis=1)
424+
expected = DataFrame({i: v.describe() for i, v in df.T.items()}, columns=df.index).T
425+
tm.assert_frame_equal(result, expected)
425426

426427

427428
def test_apply_modify_traceback():
@@ -525,7 +526,7 @@ def f(r):
525526

526527

527528
def test_apply_convert_objects():
528-
data = DataFrame(
529+
expected = DataFrame(
529530
{
530531
"A": [
531532
"foo",
@@ -572,8 +573,8 @@ def test_apply_convert_objects():
572573
}
573574
)
574575

575-
result = data.apply(lambda x: x, axis=1)
576-
tm.assert_frame_equal(result._convert(datetime=True), data)
576+
result = expected.apply(lambda x: x, axis=1)._convert(datetime=True)
577+
tm.assert_frame_equal(result, expected)
577578

578579

579580
def test_apply_attach_name(float_frame):
@@ -635,17 +636,17 @@ def test_applymap(float_frame):
635636
float_frame.applymap(type)
636637

637638
# GH 465: function returning tuples
638-
result = float_frame.applymap(lambda x: (x, x))
639-
assert isinstance(result["A"][0], tuple)
639+
result = float_frame.applymap(lambda x: (x, x))["A"][0]
640+
assert isinstance(result, tuple)
640641

641642
# GH 2909: object conversion to float in constructor?
642643
df = DataFrame(data=[1, "a"])
643-
result = df.applymap(lambda x: x)
644-
assert result.dtypes[0] == object
644+
result = df.applymap(lambda x: x).dtypes[0]
645+
assert result == object
645646

646647
df = DataFrame(data=[1.0, "a"])
647-
result = df.applymap(lambda x: x)
648-
assert result.dtypes[0] == object
648+
result = df.applymap(lambda x: x).dtypes[0]
649+
assert result == object
649650

650651
# GH 2786
651652
df = DataFrame(np.random.random((3, 4)))
@@ -672,10 +673,10 @@ def test_applymap(float_frame):
672673
DataFrame(index=list("ABC")),
673674
DataFrame({"A": [], "B": [], "C": []}),
674675
]
675-
for frame in empty_frames:
676+
for expected in empty_frames:
676677
for func in [round, lambda x: x]:
677-
result = frame.applymap(func)
678-
tm.assert_frame_equal(result, frame)
678+
result = expected.applymap(func)
679+
tm.assert_frame_equal(result, expected)
679680

680681

681682
def test_applymap_na_ignore(float_frame):
@@ -743,7 +744,8 @@ def test_frame_apply_dont_convert_datetime64():
743744
df = df.applymap(lambda x: x + BDay())
744745
df = df.applymap(lambda x: x + BDay())
745746

746-
assert df.x1.dtype == "M8[ns]"
747+
result = df.x1.dtype
748+
assert result == "M8[ns]"
747749

748750

749751
def test_apply_non_numpy_dtype():
@@ -787,11 +789,13 @@ def apply_list(row):
787789

788790
def test_apply_noreduction_tzaware_object():
789791
# https://github.com/pandas-dev/pandas/issues/31505
790-
df = DataFrame({"foo": [Timestamp("2020", tz="UTC")]}, dtype="datetime64[ns, UTC]")
791-
result = df.apply(lambda x: x)
792-
tm.assert_frame_equal(result, df)
793-
result = df.apply(lambda x: x.copy())
794-
tm.assert_frame_equal(result, df)
792+
expected = DataFrame(
793+
{"foo": [Timestamp("2020", tz="UTC")]}, dtype="datetime64[ns, UTC]"
794+
)
795+
result = expected.apply(lambda x: x)
796+
tm.assert_frame_equal(result, expected)
797+
result = expected.apply(lambda x: x.copy())
798+
tm.assert_frame_equal(result, expected)
795799

796800

797801
def test_apply_function_runs_once():
@@ -885,11 +889,11 @@ def test_infer_row_shape():
885889
# GH 17437
886890
# if row shape is changing, infer it
887891
df = DataFrame(np.random.rand(10, 2))
888-
result = df.apply(np.fft.fft, axis=0)
889-
assert result.shape == (10, 2)
892+
result = df.apply(np.fft.fft, axis=0).shape
893+
assert result == (10, 2)
890894

891-
result = df.apply(np.fft.rfft, axis=0)
892-
assert result.shape == (6, 2)
895+
result = df.apply(np.fft.rfft, axis=0).shape
896+
assert result == (6, 2)
893897

894898

895899
def test_with_dictlike_columns():

0 commit comments

Comments
 (0)