@@ -2554,7 +2554,7 @@ def _discrimination(forecast, verif, dim=None, **metric_kwargs):
25542554 * event (event) bool True False
25552555 skill <U11 'initialized'
25562556 Data variables:
2557- SST (lead, event, forecast_probability) float64 0.1481 ...
2557+ SST (lead, event, forecast_probability) float64 0.07407 ...
25582558
25592559 Option 2. Pre-process to generate a binary forecast and verification product:
25602560
@@ -2568,7 +2568,7 @@ def _discrimination(forecast, verif, dim=None, **metric_kwargs):
25682568 * event (event) bool True False
25692569 skill <U11 'initialized'
25702570 Data variables:
2571- SST (lead, event, forecast_probability) float64 0.1481 ...
2571+ SST (lead, event, forecast_probability) float64 0.07407 ...
25722572
25732573 Option 3. Pre-process to generate a probability forecast and binary
25742574 verification product. because ``member`` not present in ``hindcast``, use
@@ -2584,7 +2584,7 @@ def _discrimination(forecast, verif, dim=None, **metric_kwargs):
25842584 * event (event) bool True False
25852585 skill <U11 'initialized'
25862586 Data variables:
2587- SST (lead, event, forecast_probability) float64 0.1481 ...
2587+ SST (lead, event, forecast_probability) float64 0.07407 ...
25882588
25892589 """
25902590 forecast , verif , metric_kwargs , dim = _extract_and_apply_logical (
@@ -2659,10 +2659,10 @@ def _reliability(forecast, verif, dim=None, **metric_kwargs):
26592659 Coordinates:
26602660 * lead (lead) int32 1 2 3 4 5 6 7 8 9 10
26612661 * forecast_probability (forecast_probability) float64 0.1 0.3 0.5 0.7 0.9
2662- SST_samples (forecast_probability) float64 25 .0 3 .0 0 .0 3.0 21.0
2662+ SST_samples (forecast_probability) float64 22 .0 5 .0 1 .0 3.0 21.0
26632663 skill <U11 'initialized'
26642664 Data variables:
2665- SST (lead, forecast_probability) float64 0.16 ... 1.0
2665+ SST (lead, forecast_probability) float64 0.09091 ... 1.0
26662666
26672667 Option 2. Pre-process to generate a binary forecast and verification product:
26682668
@@ -2673,10 +2673,10 @@ def _reliability(forecast, verif, dim=None, **metric_kwargs):
26732673 Coordinates:
26742674 * lead (lead) int32 1 2 3 4 5 6 7 8 9 10
26752675 * forecast_probability (forecast_probability) float64 0.1 0.3 0.5 0.7 0.9
2676- SST_samples (forecast_probability) float64 25 .0 3 .0 0 .0 3.0 21.0
2676+ SST_samples (forecast_probability) float64 22 .0 5 .0 1 .0 3.0 21.0
26772677 skill <U11 'initialized'
26782678 Data variables:
2679- SST (lead, forecast_probability) float64 0.16 ... 1.0
2679+ SST (lead, forecast_probability) float64 0.09091 ... 1.0
26802680
26812681 Option 3. Pre-process to generate a probability forecast and binary
26822682 verification product. because ``member`` not present in ``hindcast``, use
@@ -2689,10 +2689,10 @@ def _reliability(forecast, verif, dim=None, **metric_kwargs):
26892689 Coordinates:
26902690 * lead (lead) int32 1 2 3 4 5 6 7 8 9 10
26912691 * forecast_probability (forecast_probability) float64 0.1 0.3 0.5 0.7 0.9
2692- SST_samples (forecast_probability) float64 25 .0 3 .0 0 .0 3.0 21.0
2692+ SST_samples (forecast_probability) float64 22 .0 5 .0 1 .0 3.0 21.0
26932693 skill <U11 'initialized'
26942694 Data variables:
2695- SST (lead, forecast_probability) float64 0.16 ... 1.0
2695+ SST (lead, forecast_probability) float64 0.09091 ... 1.0
26962696
26972697 """
26982698 if "logical" in metric_kwargs :
@@ -2805,27 +2805,30 @@ def _rps(forecast, verif, dim=None, **metric_kwargs):
28052805
28062806 Example:
28072807 >>> category_edges = np.array([-.5, 0., .5, 1.])
2808- >>> HindcastEnsemble.verify(metric='rps', comparison='m2o', dim='member',
2808+ >>> HindcastEnsemble.verify(metric='rps', comparison='m2o', dim=[ 'member', 'init'] ,
28092809 ... alignment='same_verifs', category_edges=category_edges)
28102810 <xarray.Dataset>
2811- Dimensions: (init: 52, lead: 10)
2811+ Dimensions: ( lead: 10)
28122812 Coordinates:
2813- * lead (lead) int32 1 2 3 4 5 6 7 8 9 10
2814- * init (init) object 1964-01-01 00:00:00 ... 2015-01-01 00:00:00
2815- skill <U11 'initialized'
2813+ * lead (lead) int32 1 2 3 4 5 6 7 8 9 10
2814+ observations_category_edge <U67 '[-np.inf, -0.5), [-0.5, 0.0), [0.0, 0.5...
2815+ forecasts_category_edge <U67 '[-np.inf, -0.5), [-0.5, 0.0), [0.0, 0.5...
2816+ skill <U11 'initialized'
28162817 Data variables:
2817- SST (lead, init) float64 0.2696 0.2696 0.2696 ... 0.2311 0.2311 0.2311
2818+ SST (lead) float64 0.115 0.1123 ... 0.1687 0.1875
2819+
28182820
28192821 >>> category_edges = np.array([9.5, 10., 10.5, 11.])
28202822 >>> PerfectModelEnsemble.verify(metric='rps', comparison='m2c',
28212823 ... dim=['member','init'], category_edges=category_edges)
28222824 <xarray.Dataset>
2823- Dimensions: (lead: 20)
2825+ Dimensions: (lead: 20)
28242826 Coordinates:
2825- * lead (lead) int64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2827+ * lead (lead) int64 1 2 3 4 5 6 7 ... 15 16 17 18 19 20
2828+ observations_category_edge <U71 '[-np.inf, 9.5), [9.5, 10.0), [10.0, 10....
2829+ forecasts_category_edge <U71 '[-np.inf, 9.5), [9.5, 10.0), [10.0, 10....
28262830 Data variables:
2827- tos (lead) float64 0.1512 0.2726 0.1259 0.214 ... 0.2085 0.1427 0.2757
2828-
2831+ tos (lead) float64 0.08951 0.1615 ... 0.1399 0.2274
28292832 """
28302833 dim = _remove_member_from_dim_or_raise (dim )
28312834 if "category_edges" in metric_kwargs :
0 commit comments