Skip to content

Commit 5232d6e

Browse files
committed
allow float fill for integer images in F.pad (pytorch#7950)
Conflicts: test/test_transforms_v2_refactored.py
1 parent f16e80a commit 5232d6e

File tree

2 files changed

+21
-8
lines changed

2 files changed

+21
-8
lines changed

test/test_transforms_v2_refactored.py

Lines changed: 16 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -309,11 +309,12 @@ def adapt_fill(value, *, dtype):
309309
return value
310310

311311
max_value = get_max_value(dtype)
312+
value_type = float if dtype.is_floating_point else int
312313

313314
if isinstance(value, (int, float)):
314-
return type(value)(value * max_value)
315+
return value_type(value * max_value)
315316
elif isinstance(value, (list, tuple)):
316-
return type(value)(type(v)(v * max_value) for v in value)
317+
return type(value)(value_type(v * max_value) for v in value)
317318
else:
318319
raise ValueError(f"fill should be an int or float, or a list or tuple of the former, but got '{value}'.")
319320

@@ -414,6 +415,10 @@ def affine_bounding_boxes(bounding_boxes):
414415
)
415416

416417

418+
# turns all warnings into errors for this module
419+
pytestmark = pytest.mark.filterwarnings("error")
420+
421+
417422
class TestResize:
418423
INPUT_SIZE = (17, 11)
419424
OUTPUT_SIZES = [17, [17], (17,), [12, 13], (12, 13)]
@@ -2575,15 +2580,19 @@ def test_functional_image_correctness(self, kwargs):
25752580
def test_transform(self, param, value, make_input):
25762581
input = make_input(self.INPUT_SIZE)
25772582

2578-
kwargs = {param: value}
25792583
if param == "fill":
2580-
# 1. size is required
2581-
# 2. the fill parameter only has an affect if we need padding
2582-
kwargs["size"] = [s + 4 for s in self.INPUT_SIZE]
2583-
25842584
if isinstance(input, tv_tensors.Mask) and isinstance(value, (tuple, list)):
25852585
pytest.skip("F.pad_mask doesn't support non-scalar fill.")
25862586

2587+
kwargs = dict(
2588+
# 1. size is required
2589+
# 2. the fill parameter only has an affect if we need padding
2590+
size=[s + 4 for s in self.INPUT_SIZE],
2591+
fill=adapt_fill(value, dtype=input.dtype if isinstance(input, torch.Tensor) else torch.uint8),
2592+
)
2593+
else:
2594+
kwargs = {param: value}
2595+
25872596
check_transform(
25882597
transforms.RandomCrop(**kwargs, pad_if_needed=True),
25892598
input,

torchvision/transforms/v2/functional/_geometry.py

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1235,7 +1235,11 @@ def _pad_with_vector_fill(
12351235

12361236
output = _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant")
12371237
left, right, top, bottom = torch_padding
1238-
fill = torch.tensor(fill, dtype=image.dtype, device=image.device).reshape(-1, 1, 1)
1238+
1239+
# We are creating the tensor in the autodetected dtype first and convert to the right one after to avoid an implicit
1240+
# float -> int conversion. That happens for example for the valid input of a uint8 image with floating point fill
1241+
# value.
1242+
fill = torch.tensor(fill, device=image.device).to(dtype=image.dtype).reshape(-1, 1, 1)
12391243

12401244
if top > 0:
12411245
output[..., :top, :] = fill

0 commit comments

Comments
 (0)