Skip to content

DataArray.mean() produces wrong result for float32 arrays of particular shapes #2401

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
bjarketol opened this issue Sep 6, 2018 · 1 comment

Comments

@bjarketol
Copy link

Code Sample

import numpy as np
import xarray as xr

np.random.seed(42)

dims = ('a', 'b', 'c', 'd')
shape = (10, 10, 500, 500)

coords = {d: np.arange(s) for d, s in zip(dims, shape)}

# Using data with non-normal distribution
data = np.random.lognormal(size=shape)
data = data.astype(np.float32)

da = xr.DataArray(data, coords=coords, dims=dims)

# Numpy method gives the correct value
print(da.values.mean())

# Explicitly specifying all axis gives the correct value
print(da.mean(axis=(0, 1, 2, 3)))

# Default DataArray mean method gives incorrect value
print(da.mean())  # <- Problem arise here

# float64 arrays produce the correct value
print(da.astype(np.float64).mean())

This is the output I see:

1.6489075

<xarray.DataArray ()>
array(1.648908, dtype=float32)

<xarray.DataArray ()>
array(1.517693)

<xarray.DataArray ()>
array(1.648907)

Problem description

Wrong mean value calculated by DataArray.mean() method with default arguments. I have only observed the problem for float32 arrays. It appears to be sensitive to the shape of the array, e.g. a shape of (10, 10, 10, 10) seems to be fine.

Expected Output

This is the output I expect for the sample above:

1.6489075

<xarray.DataArray ()>
array(1.648908, dtype=float32)

<xarray.DataArray ()>
array(1.648908, dtype=float32)

<xarray.DataArray ()>
array(1.648907)
INSTALLED VERSIONS ------------------ commit: None python: 3.6.6.final.0 python-bits: 64 OS: Linux OS-release: 4.15.0-33-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8

xarray: 0.10.8
pandas: 0.23.4
numpy: 1.15.1
scipy: 1.1.0
netCDF4: 1.4.1
h5netcdf: 0.6.2
h5py: 2.8.0
Nio: None
zarr: None
bottleneck: 1.2.1
cyordereddict: None
dask: 0.19.0
distributed: 1.23.0
matplotlib: 2.2.3
cartopy: 0.16.0
seaborn: 0.9.0
setuptools: 40.2.0
pip: 18.0
conda: 4.5.11
pytest: 3.7.4
IPython: 6.5.0
sphinx: None

@bjarketol
Copy link
Author

This is a known issue: #2370

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant