diff --git a/.travis.yml b/.travis.yml index a21d4d94413..fbc01b4815d 100644 --- a/.travis.yml +++ b/.travis.yml @@ -60,8 +60,8 @@ script: - python --version - python -OO -c "import xarray" - if [[ "$CONDA_ENV" == "docs" ]]; then - conda install -c conda-forge --override-channels sphinx sphinx_rtd_theme sphinx-gallery numpydoc "gdal>2.2.4"; - sphinx-build -n -j auto -b html -d _build/doctrees doc _build/html; + cd doc; + sphinx-build -n -j auto -b html -d _build/doctrees . _build/html; elif [[ "$CONDA_ENV" == "lint" ]]; then pycodestyle xarray ; elif [[ "$CONDA_ENV" == "py36-hypothesis" ]]; then diff --git a/ci/requirements-py36.yml b/ci/requirements-py36.yml index 0ed6dd78c3a..7523b14608b 100644 --- a/ci/requirements-py36.yml +++ b/ci/requirements-py36.yml @@ -26,8 +26,8 @@ dependencies: - pseudonetcdf>=3.0.1 - eccodes - cdms2 - # - pynio # xref #2683 - # - iris>=1.10 # xref #2683 +# - pynio # xref #2683 +# - iris>=1.10 # xref #2683 - pydap - lxml - pip: diff --git a/doc/environment.yml b/doc/environment.yml index ca4f622cd38..f4d1f4e9008 100644 --- a/doc/environment.yml +++ b/doc/environment.yml @@ -2,22 +2,25 @@ name: xarray-docs channels: - conda-forge dependencies: - - python=3.6 - - numpy=1.14.5 + - python=3.7 + - numpy=1.16.0 - pandas=0.23.3 - - scipy=1.1.0 - - matplotlib=2.2.2 + - scipy=1.2.0 + - matplotlib=3.0.2 - seaborn=0.9.0 - - dask=0.18.2 - - ipython=6.4.0 - - netCDF4=1.4.0 - - cartopy=0.16.0 - - rasterio=1.0.1 + - dask=1.1.0 + - ipython=7.2.0 + - netCDF4=1.4.2 + - cartopy=0.17.0 + - rasterio=1.0.13 - zarr=2.2.0 - - iris=2.1.0 - - flake8=3.5.0 + - iris=2.2.0 + - flake8=3.6.0 - cftime=1.0.3.4 - - bottleneck=1.2 - - sphinx=1.7.6 + - bottleneck=1.2.1 + - sphinx=1.8.2 - numpydoc=0.8.0 - sphinx-gallery=0.2.0 + - pillow=5.4.1 + - sphinx_rtd_theme=0.4.2 + - mock=2.0.0 diff --git a/doc/examples/multidimensional-coords.rst b/doc/examples/multidimensional-coords.rst index 7c86f897a24..a5084043977 100644 --- a/doc/examples/multidimensional-coords.rst +++ b/doc/examples/multidimensional-coords.rst @@ -78,9 +78,8 @@ grid, we can take advantage of xarray's ability to apply ax = plt.axes(projection=ccrs.PlateCarree()); ds.Tair[0].plot.pcolormesh(ax=ax, transform=ccrs.PlateCarree(), x='xc', y='yc', add_colorbar=False); - ax.coastlines(); @savefig xarray_multidimensional_coords_12_0.png width=100% - plt.tight_layout(); + ax.coastlines(); Multidimensional Groupby ------------------------ diff --git a/doc/pandas.rst b/doc/pandas.rst index fc20d161e05..1538fced648 100644 --- a/doc/pandas.rst +++ b/doc/pandas.rst @@ -14,7 +14,7 @@ __ http://pandas.pydata.org/pandas-docs/stable/visualization.html __ http://stanford.edu/~mwaskom/software/seaborn/ .. ipython:: python - :suppress: + :suppress: import numpy as np import pandas as pd @@ -93,7 +93,6 @@ DataFrames: s = ds['foo'].to_series() s - # or equivalently, with Series.to_xarray() xr.DataArray.from_series(s) @@ -173,11 +172,10 @@ So you can represent a Panel, in two ways: Let's take a look: .. ipython:: python - :okwarning: + :okwarning: panel = pd.Panel(np.random.rand(2, 3, 4), items=list('ab'), major_axis=list('mno'), minor_axis=pd.date_range(start='2000', periods=4, name='date')) - panel As a DataArray: diff --git a/doc/time-series.rst b/doc/time-series.rst index 1ced1ac30f6..32c6b581aa4 100644 --- a/doc/time-series.rst +++ b/doc/time-series.rst @@ -15,7 +15,6 @@ core functionality. import numpy as np import pandas as pd import xarray as xr - np.random.seed(123456) Creating datetime64 data @@ -241,7 +240,6 @@ coordinate with dates from a no-leap calendar and a from itertools import product from cftime import DatetimeNoLeap - dates = [DatetimeNoLeap(year, month, 1) for year, month in product(range(1, 3), range(1, 13))] da = xr.DataArray(np.arange(24), coords=[dates], dims=['time'], name='foo')