Skip to content

xr.infer_freq #4033

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 20 commits into from
May 30, 2020
Merged
Show file tree
Hide file tree
Changes from 9 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions xarray/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
from .backends.zarr import open_zarr
from .coding.cftime_offsets import cftime_range
from .coding.cftimeindex import CFTimeIndex
from .coding.frequencies import infer_freq
from .conventions import SerializationWarning, decode_cf
from .core.alignment import align, broadcast
from .core.combine import auto_combine, combine_by_coords, combine_nested
Expand Down Expand Up @@ -55,6 +56,7 @@
"decode_cf",
"dot",
"full_like",
"infer_freq",
"load_dataarray",
"load_dataset",
"map_blocks",
Expand Down
3 changes: 2 additions & 1 deletion xarray/coding/cftimeindex.py
Original file line number Diff line number Diff line change
Expand Up @@ -578,7 +578,8 @@ def asi8(self):
[
_total_microseconds(exact_cftime_datetime_difference(epoch, date))
for date in self.values
]
],
dtype=np.int64,
)

def _round_via_method(self, freq, method):
Expand Down
229 changes: 229 additions & 0 deletions xarray/coding/frequencies.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,229 @@
import numpy as np
import pandas as pd

from .cftime_offsets import _MONTH_ABBREVIATIONS
from .cftimeindex import CFTimeIndex

_ONE_MICRO = 1
_ONE_MILLI = _ONE_MICRO * 1000
_ONE_SECOND = _ONE_MILLI * 1000
_ONE_MINUTE = 60 * _ONE_SECOND
_ONE_HOUR = 60 * _ONE_MINUTE
_ONE_DAY = 24 * _ONE_HOUR


def infer_freq(index):
"""
Infer the most likely frequency given the input index.

Parameters
----------
index : CFTimeIndex, DataArray, pd.DatetimeIndex or pd.TimedeltaIndex
If not passed a CFTimeIndex, this simply calls `pandas.infer_freq`.
If passed a Series or a DataArray will use the values of the series (NOT THE INDEX).

Returns
-------
str or None
None if no discernible frequency.

Raises
------
TypeError
If the index is not datetime-like.
ValueError
If there are fewer than three values or the index is not 1D.
"""
from xarray.core.dataarray import DataArray

if isinstance(index, DataArray):
if index.ndim > 1:
raise ValueError("'index' must be 1D")
if np.asarray(index).dtype == "datetime64[ns]":
index = pd.DatetimeIndex(index)
else:
index = CFTimeIndex(index)

if isinstance(index, CFTimeIndex):
inferer = _CFTimeFrequencyInferer(index)
return inferer.get_freq()

return pd.infer_freq(index)


class _CFTimeFrequencyInferer: # (pd.tseries.frequencies._FrequencyInferer):
def __init__(self, index):
self.index = index
self.values = index.asi8

if len(index) < 3:
raise ValueError("Need at least 3 dates to infer frequency")

self.is_monotonic = (
self.index.is_monotonic_decreasing or self.index.is_monotonic_increasing
)

self._deltas = None
self._year_deltas = None
self._month_deltas = None

def get_freq(self):
"""Find the appropriate frequency string to describe the inferred frequency of self.index

Adapted from `pandas.tsseries.frequencies._FrequencyInferer.get_freq` for CFTimeIndexes.

Returns
-------
str or None
"""
if not self.is_monotonic or not self.index.is_unique:
return None

delta = self.deltas[0] # Smallest delta
if _is_multiple(delta, _ONE_DAY):
return self._infer_daily_rule()
# There is not other possible intraday frequency
# Different from pandas: we don't need to manage DST and business offsets in cftime
elif not len(self.deltas) == 1:
return None

if _is_multiple(delta, _ONE_HOUR):
# Hours
return _maybe_add_count("H", delta / _ONE_HOUR)
elif _is_multiple(delta, _ONE_MINUTE):
# Minutes
return _maybe_add_count("T", delta / _ONE_MINUTE)
elif _is_multiple(delta, _ONE_SECOND):
# Seconds
return _maybe_add_count("S", delta / _ONE_SECOND)
elif _is_multiple(delta, _ONE_MILLI):
# Milliseconds
return _maybe_add_count("L", delta / _ONE_MILLI)
else:
# Microseconds (smallest CFTime division)
return _maybe_add_count("U", delta / _ONE_MICRO)

def _infer_daily_rule(self):
annual_rule = self._get_annual_rule()
if annual_rule:
nyears = self.year_deltas[0]
month = _MONTH_ABBREVIATIONS[self.index[0].month]
alias = f"{annual_rule}-{month}"
return _maybe_add_count(alias, nyears)

quartely_rule = self._get_quartely_rule()
if quartely_rule:
nquarters = self.month_deltas[0] / 3
mod_dict = {0: 12, 2: 11, 1: 10}
month = _MONTH_ABBREVIATIONS[mod_dict[self.index[0].month % 3]]
alias = f"{quartely_rule}-{month}"
return _maybe_add_count(alias, nquarters)

monthly_rule = self._get_monthly_rule()
if monthly_rule:
return _maybe_add_count(monthly_rule, self.month_deltas[0])

if len(self.deltas) == 1:
# Daily as there is no "Weekly" offsets with CFTime
days = self.deltas[0] / _ONE_DAY
return _maybe_add_count("D", days)

# CFTime has no business freq and no "week of month" (WOM)
return None

def _get_annual_rule(self):
if len(self.year_deltas) > 1:
return None

if len(np.unique(self.index.month)) > 1:
return None

return {"cs": "AS", "ce": "A"}.get(month_anchor_check(self.index))

def _get_quartely_rule(self):
if len(self.month_deltas) > 1:
return None

if not self.month_deltas[0] % 3 == 0:
return None

return {"cs": "QS", "ce": "Q"}.get(month_anchor_check(self.index))

def _get_monthly_rule(self):
if len(self.month_deltas) > 1:
return None

return {"cs": "MS", "ce": "M"}.get(month_anchor_check(self.index))

@property
def deltas(self):
"""Sorted unique timedeltas as microseconds."""
if self._deltas is None:
self._deltas = _unique_deltas(self.values)
return self._deltas

@property
def year_deltas(self):
"""Sorted unique year deltas."""
if self._year_deltas is None:
self._year_deltas = _unique_deltas(self.index.year)
return self._year_deltas

@property
def month_deltas(self):
"""Sorted unique month deltas."""
if self._month_deltas is None:
self._month_deltas = _unique_deltas(self.index.year * 12 + self.index.month)
return self._month_deltas


def _unique_deltas(arr):
"""Sorted unique deltas of numpy array"""
return np.sort(np.unique(np.diff(arr)))


def _is_multiple(us, mult: int):
"""Whether us is a multiple of mult"""
return us % mult == 0


def _maybe_add_count(base: str, count: float):
"""If count is greater than 1, add it to the base offset string"""
if count != 1:
assert count == int(count)
count = int(count)
return f"{count}{base}"
else:
return base


def month_anchor_check(dates):
"""Return the monthly offset string.

Return "cs" if all dates are the first days of the month,
"ce" if all dates are the last day of the month,
None otherwise.

Replicated pandas._libs.tslibs.resolution.month_position_check
but without business offset handling.
"""
calendar_end = True
calendar_start = True

for date in dates:
if calendar_start:
calendar_start &= date.day == 1

if calendar_end:
cal = date.day == date.daysinmonth
if calendar_end:
calendar_end &= cal
elif not calendar_start:
break

if calendar_end:
return "ce"
elif calendar_start:
return "cs"
else:
return None
25 changes: 25 additions & 0 deletions xarray/tests/test_cftimeindex.py
Original file line number Diff line number Diff line change
Expand Up @@ -1046,3 +1046,28 @@ def test_asi8_distant_date():
result = index.asi8
expected = np.array([1000000 * 86400 * 400 * 8000 + 12345 * 1000000 + 123456])
np.testing.assert_array_equal(result, expected)


@requires_cftime_1_1_0
@pytest.mark.parametrize(
"freq",
[
"A-DEC",
"AS-JUL",
"2AS-FEB",
"Q-NOV",
"3QS-DEC",
"MS",
"4M",
"7D",
"D",
"30H",
"5T",
"40S",
],
)
@pytest.mark.parametrize("calendar", _CFTIME_CALENDARS)
def test_infer_freq(freq, calendar):
indx = xr.cftime_range("2000-01-01", periods=50, freq=freq, calendar=calendar)
out = xr.infer_freq(indx)
assert out == freq