@@ -7,7 +7,7 @@ class ARLinkPredictor(torch.nn.Module):
77 `"Pseudo-Euclidean Attract-Repel Embeddings for Undirected Graphs"
88 <https://arxiv.org/abs/2106.09671>`_.
99
10- This model splits node embeddings into: attract and
10+ This model splits node embeddings into: attract and
1111 repel.
1212 The edge prediction score is computed as the dot product of attract
1313 components minus the dot product of repel components.
@@ -69,10 +69,10 @@ def encode(self, x, *args, **kwargs):
6969 """Encode node features into attract-repel embeddings.
7070
7171 Args:
72- x (torch.Tensor): Node feature matrix of shape
72+ x (torch.Tensor): Node feature matrix of shape
7373 :obj:`[num_nodes, in_channels]`.
74- *args: Variable length argument list
75- **kwargs: Arbitrary keyword arguments
74+ *args: Variable length argument list
75+ **kwargs: Arbitrary keyword arguments
7676 """
7777 for lin in self .lins :
7878 x = lin (x )
@@ -89,11 +89,11 @@ def decode(self, attract_z, repel_z, edge_index):
8989 """Decode edge scores from attract-repel embeddings.
9090
9191 Args:
92- attract_z (torch.Tensor): Attract embeddings of shape
92+ attract_z (torch.Tensor): Attract embeddings of shape
9393 :obj:`[num_nodes, attract_dim]`.
94- repel_z (torch.Tensor): Repel embeddings of shape
94+ repel_z (torch.Tensor): Repel embeddings of shape
9595 :obj:`[num_nodes, repel_dim]`.
96- edge_index (torch.Tensor): Edge indices of shape
96+ edge_index (torch.Tensor): Edge indices of shape
9797 :obj:`[2, num_edges]`.
9898
9999 Returns:
0 commit comments