Skip to content

Commit 2302db5

Browse files
committed
remove global ignore
1 parent 88402a7 commit 2302db5

File tree

6 files changed

+15
-15
lines changed

6 files changed

+15
-15
lines changed

pymc/tuning/starting.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -132,7 +132,7 @@ def find_MAP(
132132
# TODO: If the mapping is fixed, we can simply create graphs for the
133133
# mapping and avoid all this bijection overhead
134134
compiled_logp_func = DictToArrayBijection.mapf(model.compile_logp(jacobian=False), start)
135-
logp_func = lambda x: compiled_logp_func(RaveledVars(x, x0.point_map_info))
135+
logp_func = lambda x: compiled_logp_func(RaveledVars(x, x0.point_map_info)) # noqa E731
136136

137137
rvs = [model.values_to_rvs[vars_dict[name]] for name, _, _ in x0.point_map_info]
138138
try:
@@ -141,7 +141,7 @@ def find_MAP(
141141
compiled_dlogp_func = DictToArrayBijection.mapf(
142142
model.compile_dlogp(rvs, jacobian=False), start
143143
)
144-
dlogp_func = lambda x: compiled_dlogp_func(RaveledVars(x, x0.point_map_info))
144+
dlogp_func = lambda x: compiled_dlogp_func(RaveledVars(x, x0.point_map_info)) # noqa E731
145145
compute_gradient = True
146146
except (AttributeError, NotImplementedError, tg.NullTypeGradError):
147147
compute_gradient = False

tests/distributions/test_continuous.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1846,7 +1846,7 @@ def halfstudentt_rng_fn(self, df, loc, scale, size, rng):
18461846
pymc_dist_params = {"nu": 5.0, "sigma": 2.0}
18471847
expected_rv_op_params = {"nu": 5.0, "sigma": 2.0}
18481848
reference_dist_params = {"df": 5.0, "loc": 0, "scale": 2.0}
1849-
reference_dist = lambda self: ft.partial(self.halfstudentt_rng_fn, rng=self.get_random_state())
1849+
reference_dist = lambda self: ft.partial(self.halfstudentt_rng_fn, rng=self.get_random_state()) # noqa E731
18501850
checks_to_run = [
18511851
"check_pymc_params_match_rv_op",
18521852
"check_pymc_draws_match_reference",
@@ -2069,7 +2069,7 @@ def logit_normal_rng_fn(self, rng, size, loc, scale):
20692069
pymc_dist_params = {"mu": 5.0, "sigma": 10.0}
20702070
expected_rv_op_params = {"mu": 5.0, "sigma": 10.0}
20712071
reference_dist_params = {"loc": 5.0, "scale": 10.0}
2072-
reference_dist = lambda self: ft.partial(self.logit_normal_rng_fn, rng=self.get_random_state())
2072+
reference_dist = lambda self: ft.partial(self.logit_normal_rng_fn, rng=self.get_random_state()) # noqa E731
20732073
checks_to_run = [
20742074
"check_pymc_params_match_rv_op",
20752075
"check_pymc_draws_match_reference",
@@ -2140,7 +2140,7 @@ class TestBeta(BaseTestDistributionRandom):
21402140
expected_rv_op_params = {"alpha": 2.0, "beta": 5.0}
21412141
reference_dist_params = {"a": 2.0, "b": 5.0}
21422142
size = 15
2143-
reference_dist = lambda self: ft.partial(clipped_beta_rvs, random_state=self.get_random_state())
2143+
reference_dist = lambda self: ft.partial(clipped_beta_rvs, random_state=self.get_random_state()) # noqa E731
21442144
checks_to_run = [
21452145
"check_pymc_params_match_rv_op",
21462146
"check_pymc_draws_match_reference",
@@ -2340,7 +2340,7 @@ def polyagamma_rng_fn(self, size, h, z, rng):
23402340
pymc_dist_params = {"h": 1.0, "z": 0.0}
23412341
expected_rv_op_params = {"h": 1.0, "z": 0.0}
23422342
reference_dist_params = {"h": 1.0, "z": 0.0}
2343-
reference_dist = lambda self: ft.partial(self.polyagamma_rng_fn, rng=self.get_random_state())
2343+
reference_dist = lambda self: ft.partial(self.polyagamma_rng_fn, rng=self.get_random_state()) # noqa E731
23442344
checks_to_run = [
23452345
"check_pymc_params_match_rv_op",
23462346
"check_pymc_draws_match_reference",
@@ -2361,7 +2361,7 @@ def interpolated_rng_fn(self, size, mu, sigma, rng):
23612361
pymc_dist_params = {"x_points": x_points, "pdf_points": pdf_points}
23622362
reference_dist_params = {"mu": mu, "sigma": sigma}
23632363

2364-
reference_dist = lambda self: ft.partial(self.interpolated_rng_fn, rng=self.get_random_state())
2364+
reference_dist = lambda self: ft.partial(self.interpolated_rng_fn, rng=self.get_random_state()) # noqa E731
23652365
checks_to_run = [
23662366
"check_rv_size",
23672367
"check_draws",

tests/distributions/test_discrete.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -842,7 +842,7 @@ def discrete_uniform_rng_fn(self, size, lower, upper, rng):
842842
pymc_dist_params = {"lower": -1, "upper": 9}
843843
expected_rv_op_params = {"lower": -1, "upper": 9}
844844
reference_dist_params = {"lower": -1, "upper": 9}
845-
reference_dist = lambda self: ft.partial(
845+
reference_dist = lambda self: ft.partial( # noqa E731
846846
self.discrete_uniform_rng_fn, rng=self.get_random_state()
847847
)
848848
checks_to_run = [

tests/distributions/test_distribution.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -301,7 +301,7 @@ def logp(value, mu):
301301
)
302302
def test_custom_dist_default_moment_univariate(self, moment, size, expected):
303303
if moment == "custom_moment":
304-
moment = lambda rv, size, *rv_inputs: 5 * pt.ones(size, dtype=rv.dtype)
304+
moment = lambda rv, size, *rv_inputs: 5 * pt.ones(size, dtype=rv.dtype) # noqa E731
305305
with pm.Model() as model:
306306
x = CustomDist("x", moment=moment, size=size)
307307
assert isinstance(x.owner.op, CustomDistRV)
@@ -821,7 +821,7 @@ def diracdelta_rng_fn(self, size, c):
821821
pymc_dist_params = {"c": 3}
822822
expected_rv_op_params = {"c": 3}
823823
reference_dist_params = {"c": 3}
824-
reference_dist = lambda self: self.diracdelta_rng_fn
824+
reference_dist = lambda self: self.diracdelta_rng_fn # noqa E731
825825
checks_to_run = [
826826
"check_pymc_params_match_rv_op",
827827
"check_pymc_draws_match_reference",

tests/distributions/test_multivariate.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1778,7 +1778,7 @@ def mvstudentt_rng_fn(self, size, nu, mu, scale, rng):
17781778
"mu": np.array([1.0, 2.0]),
17791779
"scale": np.array([[2.0, 0.0], [0.0, 3.5]]),
17801780
}
1781-
reference_dist = lambda self: ft.partial(self.mvstudentt_rng_fn, rng=self.get_random_state())
1781+
reference_dist = lambda self: ft.partial(self.mvstudentt_rng_fn, rng=self.get_random_state()) # noqa E731
17821782
checks_to_run = [
17831783
"check_pymc_params_match_rv_op",
17841784
"check_pymc_draws_match_reference",
@@ -1981,7 +1981,7 @@ def wishart_rng_fn(self, size, nu, V, rng):
19811981
(1, 3, 3),
19821982
(4, 5, 3, 3),
19831983
]
1984-
reference_dist = lambda self: ft.partial(self.wishart_rng_fn, rng=self.get_random_state())
1984+
reference_dist = lambda self: ft.partial(self.wishart_rng_fn, rng=self.get_random_state()) # noqa E731
19851985
checks_to_run = [
19861986
"check_rv_size",
19871987
"check_pymc_params_match_rv_op",
@@ -2110,7 +2110,7 @@ def kronecker_rng_fn(self, size, mu, covs=None, sigma=None, rng=None):
21102110
sizes_to_check = [None, (), 1, (1,), 5, (4, 5), (2, 4, 2)]
21112111
sizes_expected = [(N,), (N,), (1, N), (1, N), (5, N), (4, 5, N), (2, 4, 2, N)]
21122112

2113-
reference_dist = lambda self: ft.partial(self.kronecker_rng_fn, rng=self.get_random_state())
2113+
reference_dist = lambda self: ft.partial(self.kronecker_rng_fn, rng=self.get_random_state()) # noqa E731
21142114
checks_to_run = [
21152115
"check_pymc_draws_match_reference",
21162116
"check_rv_size",
@@ -2366,7 +2366,7 @@ def test_mvnormal_no_cholesky_in_model_logp():
23662366
data = np.ones((batch_size, n))
23672367
pm.MvNormal("y", mu=mu, chol=pt.broadcast_to(chol, (batch_size, n, n)), observed=data)
23682368

2369-
contains_cholesky_op = lambda fgraph: any(
2369+
contains_cholesky_op = lambda fgraph: any( # noqa E731
23702370
isinstance(node.op, Cholesky) for node in fgraph.apply_nodes
23712371
)
23722372

tests/distributions/test_timeseries.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -952,7 +952,7 @@ def _gen_sde_path(sde, pars, dt, n, x0):
952952
xs.append(xs[-1] + f * dt + np.sqrt(dt) * g * wt[i])
953953
return np.array(xs)
954954

955-
sde = lambda x, lam: (lam * x, sig2)
955+
sde = lambda x, lam: (lam * x, sig2) # noqa E731
956956
x = floatX(_gen_sde_path(sde, (lam,), dt, N, 5.0))
957957
z = x + numpy_rng.standard_normal(size=x.size) * sig2
958958
# build model

0 commit comments

Comments
 (0)