|
12 | 12 | # See the License for the specific language governing permissions and
|
13 | 13 | # limitations under the License.
|
14 | 14 |
|
| 15 | +from typing import Tuple, Union |
| 16 | + |
15 | 17 | import aesara.tensor as at
|
16 | 18 | import numpy as np
|
17 | 19 |
|
18 | 20 | from aesara import scan
|
19 |
| -from scipy import stats |
| 21 | +from aesara.tensor.random.op import RandomVariable |
20 | 22 |
|
21 |
| -from pymc.distributions import distribution, multivariate |
| 23 | +from pymc.aesaraf import change_rv_size, floatX, intX |
| 24 | +from pymc.distributions import distribution, logprob, multivariate |
22 | 25 | from pymc.distributions.continuous import Flat, Normal, get_tau_sigma
|
| 26 | +from pymc.distributions.dist_math import check_parameters |
23 | 27 | from pymc.distributions.shape_utils import to_tuple
|
| 28 | +from pymc.util import check_dist_not_registered |
24 | 29 |
|
25 | 30 | __all__ = [
|
26 | 31 | "AR1",
|
|
33 | 38 | ]
|
34 | 39 |
|
35 | 40 |
|
| 41 | +class GaussianRandomWalkRV(RandomVariable): |
| 42 | + """ |
| 43 | + GaussianRandomWalk Random Variable |
| 44 | + """ |
| 45 | + |
| 46 | + name = "GaussianRandomWalk" |
| 47 | + ndim_supp = 1 |
| 48 | + ndims_params = [0, 0, 0, 0] |
| 49 | + dtype = "floatX" |
| 50 | + _print_name = ("GaussianRandomWalk", "\\operatorname{GaussianRandomWalk}") |
| 51 | + |
| 52 | + def make_node(self, rng, size, dtype, mu, sigma, init, steps): |
| 53 | + steps = at.as_tensor_variable(steps) |
| 54 | + if not steps.ndim == 0 or not steps.dtype.startswith("int"): |
| 55 | + raise ValueError("steps must be an integer scalar (ndim=0).") |
| 56 | + |
| 57 | + return super().make_node(rng, size, dtype, mu, sigma, init, steps) |
| 58 | + |
| 59 | + def _supp_shape_from_params(self, dist_params, reop_param_idx=0, param_shapes=None): |
| 60 | + steps = dist_params[3] |
| 61 | + |
| 62 | + return (steps + 1,) |
| 63 | + |
| 64 | + @classmethod |
| 65 | + def rng_fn( |
| 66 | + cls, |
| 67 | + rng: np.random.RandomState, |
| 68 | + mu: Union[np.ndarray, float], |
| 69 | + sigma: Union[np.ndarray, float], |
| 70 | + init: float, |
| 71 | + steps: int, |
| 72 | + size: Tuple[int], |
| 73 | + ) -> np.ndarray: |
| 74 | + """Gaussian Random Walk generator. |
| 75 | +
|
| 76 | + The init value is drawn from the Normal distribution with the same sigma as the |
| 77 | + innovations. |
| 78 | +
|
| 79 | + Notes |
| 80 | + ----- |
| 81 | + Currently does not support custom init distribution |
| 82 | +
|
| 83 | + Parameters |
| 84 | + ---------- |
| 85 | + rng: np.random.RandomState |
| 86 | + Numpy random number generator |
| 87 | + mu: array_like |
| 88 | + Random walk mean |
| 89 | + sigma: np.ndarray |
| 90 | + Standard deviation of innovation (sigma > 0) |
| 91 | + init: float |
| 92 | + Initialization value for GaussianRandomWalk |
| 93 | + steps: int |
| 94 | + Length of random walk, must be greater than 1. Returned array will be of size+1 to |
| 95 | + account as first value is initial value |
| 96 | + size: int |
| 97 | + The number of Random Walk time series generated |
| 98 | +
|
| 99 | + Returns |
| 100 | + ------- |
| 101 | + ndarray |
| 102 | + """ |
| 103 | + |
| 104 | + if steps < 1: |
| 105 | + raise ValueError("Steps must be greater than 0") |
| 106 | + |
| 107 | + # If size is None then the returned series should be (*implied_dims, 1+steps) |
| 108 | + if size is None: |
| 109 | + # broadcast parameters with each other to find implied dims |
| 110 | + bcast_shape = np.broadcast_shapes( |
| 111 | + np.asarray(mu).shape, |
| 112 | + np.asarray(sigma).shape, |
| 113 | + np.asarray(init).shape, |
| 114 | + ) |
| 115 | + dist_shape = (*bcast_shape, int(steps)) |
| 116 | + |
| 117 | + # If size is None then the returned series should be (*size, 1+steps) |
| 118 | + else: |
| 119 | + init_size = (*size, 1) |
| 120 | + dist_shape = (*size, int(steps)) |
| 121 | + |
| 122 | + innovations = rng.normal(loc=mu, scale=sigma, size=dist_shape) |
| 123 | + grw = np.concatenate([init[..., None], innovations], axis=-1) |
| 124 | + return np.cumsum(grw, axis=-1) |
| 125 | + |
| 126 | + |
| 127 | +gaussianrandomwalk = GaussianRandomWalkRV() |
| 128 | + |
| 129 | + |
| 130 | +class GaussianRandomWalk(distribution.Continuous): |
| 131 | + r"""Random Walk with Normal innovations |
| 132 | +
|
| 133 | + Parameters |
| 134 | + ---------- |
| 135 | + mu : tensor_like of float |
| 136 | + innovation drift, defaults to 0.0 |
| 137 | + sigma : tensor_like of float, optional |
| 138 | + sigma > 0, innovation standard deviation, defaults to 1.0 |
| 139 | + init : Univariate PyMC distribution |
| 140 | + Univariate distribution of the initial value, created with the `.dist()` API. |
| 141 | + Defaults to Normal with same `mu` and `sigma` as the GaussianRandomWalk |
| 142 | + steps : int |
| 143 | + Number of steps in Gaussian Random Walks (steps > 0). |
| 144 | + """ |
| 145 | + |
| 146 | + rv_op = gaussianrandomwalk |
| 147 | + |
| 148 | + def __new__(cls, name, mu=0.0, sigma=1.0, init=None, steps=None, **kwargs): |
| 149 | + if init is not None: |
| 150 | + check_dist_not_registered(init) |
| 151 | + return super().__new__(cls, name, mu, sigma, init, steps, **kwargs) |
| 152 | + |
| 153 | + @classmethod |
| 154 | + def dist( |
| 155 | + cls, mu=0.0, sigma=1.0, init=None, steps=None, size=None, **kwargs |
| 156 | + ) -> at.TensorVariable: |
| 157 | + |
| 158 | + mu = at.as_tensor_variable(floatX(mu)) |
| 159 | + sigma = at.as_tensor_variable(floatX(sigma)) |
| 160 | + if steps is None: |
| 161 | + raise ValueError("Must specify steps parameter") |
| 162 | + steps = at.as_tensor_variable(intX(steps)) |
| 163 | + |
| 164 | + shape = kwargs.get("shape", None) |
| 165 | + if size is None and shape is None: |
| 166 | + init_size = None |
| 167 | + else: |
| 168 | + init_size = to_tuple(size) if size is not None else to_tuple(shape)[:-1] |
| 169 | + |
| 170 | + # If no scalar distribution is passed then initialize with a Normal of same mu and sigma |
| 171 | + if init is None: |
| 172 | + init = Normal.dist(mu, sigma, size=init_size) |
| 173 | + else: |
| 174 | + if not ( |
| 175 | + isinstance(init, at.TensorVariable) |
| 176 | + and init.owner is not None |
| 177 | + and isinstance(init.owner.op, RandomVariable) |
| 178 | + and init.owner.op.ndim_supp == 0 |
| 179 | + ): |
| 180 | + raise TypeError("init must be a univariate distribution variable") |
| 181 | + |
| 182 | + if init_size is not None: |
| 183 | + init = change_rv_size(init, init_size) |
| 184 | + else: |
| 185 | + # If not explicit, size is determined by the shapes of mu, sigma, and init |
| 186 | + bcast_shape = at.broadcast_arrays(mu, sigma, init)[0].shape |
| 187 | + init = change_rv_size(init, bcast_shape) |
| 188 | + |
| 189 | + # Ignores logprob of init var because that's accounted for in the logp method |
| 190 | + init.tag.ignore_logprob = True |
| 191 | + |
| 192 | + return super().dist([mu, sigma, init, steps], size=size, **kwargs) |
| 193 | + |
| 194 | + def logp( |
| 195 | + value: at.Variable, |
| 196 | + mu: at.Variable, |
| 197 | + sigma: at.Variable, |
| 198 | + init: at.Variable, |
| 199 | + steps: at.Variable, |
| 200 | + ) -> at.TensorVariable: |
| 201 | + """Calculate log-probability of Gaussian Random Walk distribution at specified value. |
| 202 | +
|
| 203 | + Parameters |
| 204 | + ---------- |
| 205 | + value: at.Variable, |
| 206 | + mu: at.Variable, |
| 207 | + sigma: at.Variable, |
| 208 | + init: at.Variable, Not used |
| 209 | + steps: at.Variable, Not used |
| 210 | +
|
| 211 | + Returns |
| 212 | + ------- |
| 213 | + TensorVariable |
| 214 | + """ |
| 215 | + |
| 216 | + # Calculate initialization logp |
| 217 | + init_logp = logprob.logp(init, value[..., 0]) |
| 218 | + |
| 219 | + # Make time series stationary around the mean value |
| 220 | + stationary_series = value[..., 1:] - value[..., :-1] |
| 221 | + series_logp = logprob.logp(Normal.dist(mu, sigma), stationary_series) |
| 222 | + |
| 223 | + return check_parameters( |
| 224 | + init_logp + series_logp.sum(axis=-1), |
| 225 | + steps > 0, |
| 226 | + msg="steps > 0", |
| 227 | + ) |
| 228 | + |
| 229 | + |
36 | 230 | class AR1(distribution.Continuous):
|
37 | 231 | """
|
38 | 232 | Autoregressive process with 1 lag.
|
@@ -171,125 +365,6 @@ def logp(self, value):
|
171 | 365 | return at.sum(innov_like) + at.sum(init_like)
|
172 | 366 |
|
173 | 367 |
|
174 |
| -class GaussianRandomWalk(distribution.Continuous): |
175 |
| - r"""Random Walk with Normal innovations |
176 |
| -
|
177 |
| - Note that this is mainly a user-friendly wrapper to enable an easier specification |
178 |
| - of GRW. You are not restricted to use only Normal innovations but can use any |
179 |
| - distribution: just use `aesara.tensor.cumsum()` to create the random walk behavior. |
180 |
| -
|
181 |
| - Parameters |
182 |
| - ---------- |
183 |
| - mu : tensor_like of float, default 0 |
184 |
| - innovation drift, defaults to 0.0 |
185 |
| - For vector valued `mu`, first dimension must match shape of the random walk, and |
186 |
| - the first element will be discarded (since there is no innovation in the first timestep) |
187 |
| - sigma : tensor_like of float, optional |
188 |
| - `sigma` > 0, innovation standard deviation (only required if `tau` is not specified) |
189 |
| - For vector valued `sigma`, first dimension must match shape of the random walk, and |
190 |
| - the first element will be discarded (since there is no innovation in the first timestep) |
191 |
| - tau : tensor_like of float, optional |
192 |
| - `tau` > 0, innovation precision (only required if `sigma` is not specified) |
193 |
| - For vector valued `tau`, first dimension must match shape of the random walk, and |
194 |
| - the first element will be discarded (since there is no innovation in the first timestep) |
195 |
| - init : pymc.Distribution, optional |
196 |
| - distribution for initial value (Defaults to Flat()) |
197 |
| - """ |
198 |
| - |
199 |
| - def __init__(self, tau=None, init=None, sigma=None, mu=0.0, *args, **kwargs): |
200 |
| - kwargs.setdefault("shape", 1) |
201 |
| - super().__init__(*args, **kwargs) |
202 |
| - if sum(self.shape) == 0: |
203 |
| - raise TypeError("GaussianRandomWalk must be supplied a non-zero shape argument!") |
204 |
| - tau, sigma = get_tau_sigma(tau=tau, sigma=sigma) |
205 |
| - self.tau = at.as_tensor_variable(tau) |
206 |
| - sigma = at.as_tensor_variable(sigma) |
207 |
| - self.sigma = sigma |
208 |
| - self.mu = at.as_tensor_variable(mu) |
209 |
| - self.init = init or Flat.dist() |
210 |
| - self.mean = at.as_tensor_variable(0.0) |
211 |
| - |
212 |
| - def _mu_and_sigma(self, mu, sigma): |
213 |
| - """Helper to get mu and sigma if they are high dimensional.""" |
214 |
| - if sigma.ndim > 0: |
215 |
| - sigma = sigma[1:] |
216 |
| - if mu.ndim > 0: |
217 |
| - mu = mu[1:] |
218 |
| - return mu, sigma |
219 |
| - |
220 |
| - def logp(self, x): |
221 |
| - """ |
222 |
| - Calculate log-probability of Gaussian Random Walk distribution at specified value. |
223 |
| -
|
224 |
| - Parameters |
225 |
| - ---------- |
226 |
| - x : numeric |
227 |
| - Value for which log-probability is calculated. |
228 |
| -
|
229 |
| - Returns |
230 |
| - ------- |
231 |
| - TensorVariable |
232 |
| - """ |
233 |
| - if x.ndim > 0: |
234 |
| - x_im1 = x[:-1] |
235 |
| - x_i = x[1:] |
236 |
| - mu, sigma = self._mu_and_sigma(self.mu, self.sigma) |
237 |
| - innov_like = Normal.dist(mu=x_im1 + mu, sigma=sigma).logp(x_i) |
238 |
| - return self.init.logp(x[0]) + at.sum(innov_like) |
239 |
| - return self.init.logp(x) |
240 |
| - |
241 |
| - def random(self, point=None, size=None): |
242 |
| - """Draw random values from GaussianRandomWalk. |
243 |
| -
|
244 |
| - Parameters |
245 |
| - ---------- |
246 |
| - point : dict or Point, optional |
247 |
| - Dict of variable values on which random values are to be |
248 |
| - conditioned (uses default point if not specified). |
249 |
| - size : int, optional |
250 |
| - Desired size of random sample (returns one sample if not |
251 |
| - specified). |
252 |
| -
|
253 |
| - Returns |
254 |
| - ------- |
255 |
| - array |
256 |
| - """ |
257 |
| - # sigma, mu = distribution.draw_values([self.sigma, self.mu], point=point, size=size) |
258 |
| - # return distribution.generate_samples( |
259 |
| - # self._random, |
260 |
| - # sigma=sigma, |
261 |
| - # mu=mu, |
262 |
| - # size=size, |
263 |
| - # dist_shape=self.shape, |
264 |
| - # not_broadcast_kwargs={"sample_shape": to_tuple(size)}, |
265 |
| - # ) |
266 |
| - pass |
267 |
| - |
268 |
| - def _random(self, sigma, mu, size, sample_shape): |
269 |
| - """Implement a Gaussian random walk as a cumulative sum of normals. |
270 |
| - axis = len(size) - 1 denotes the axis along which cumulative sum would be calculated. |
271 |
| - This might need to be corrected in future when issue #4010 is fixed. |
272 |
| - """ |
273 |
| - if size[len(sample_shape)] == sample_shape: |
274 |
| - axis = len(sample_shape) |
275 |
| - else: |
276 |
| - axis = len(size) - 1 |
277 |
| - rv = stats.norm(mu, sigma) |
278 |
| - data = rv.rvs(size).cumsum(axis=axis) |
279 |
| - data = np.array(data) |
280 |
| - |
281 |
| - # the following lines center the random walk to start at the origin. |
282 |
| - if len(data.shape) > 1: |
283 |
| - for i in range(data.shape[0]): |
284 |
| - data[i] = data[i] - data[i][0] |
285 |
| - else: |
286 |
| - data = data - data[0] |
287 |
| - return data |
288 |
| - |
289 |
| - def _distr_parameters_for_repr(self): |
290 |
| - return ["mu", "sigma"] |
291 |
| - |
292 |
| - |
293 | 368 | class GARCH11(distribution.Continuous):
|
294 | 369 | r"""
|
295 | 370 | GARCH(1,1) with Normal innovations. The model is specified by
|
|
0 commit comments