@@ -72,8 +72,7 @@ def test_non_iid_fails(if_max):
72
72
x_m = pt .max (x , axis = - 1 )
73
73
x_m_value = pt .vector ("x_max_value" )
74
74
else :
75
- x_min = pt .min (x , axis = - 1 )
76
- x_m = x_min .owner .inputs [0 ]
75
+ x_m = pt .min (x , axis = - 1 )
77
76
x_m_value = pt .vector ("x_min_value" )
78
77
with pytest .raises (RuntimeError , match = re .escape ("Logprob method not implemented" )):
79
78
x_max_logprob = logp (x_m , x_m_value )
@@ -91,8 +90,7 @@ def test_non_rv_fails(if_max):
91
90
x_m = pt .max (x , axis = - 1 )
92
91
x_m_value = pt .vector ("x_max_value" )
93
92
else :
94
- x_min = pt .min (x , axis = - 1 )
95
- x_m = x_min .owner .inputs [0 ]
93
+ x_m = pt .min (x , axis = - 1 )
96
94
x_m_value = pt .vector ("x_min_value" )
97
95
with pytest .raises (RuntimeError , match = re .escape ("Logprob method not implemented" )):
98
96
x_max_logprob = logp (x_m , x_m_value )
@@ -114,8 +112,7 @@ def test_multivariate_rv_fails(if_max):
114
112
x_m = pt .max (x , axis = - 1 )
115
113
x_m_value = pt .vector ("x_max_value" )
116
114
else :
117
- x_min = pt .min (x , axis = - 1 )
118
- x_m = x_min .owner .inputs [0 ]
115
+ x_m = pt .min (x , axis = - 1 )
119
116
x_m_value = pt .vector ("x_min_value" )
120
117
with pytest .raises (RuntimeError , match = re .escape ("Logprob method not implemented" )):
121
118
x_max_logprob = logp (x_m , x_m_value )
@@ -136,8 +133,7 @@ def test_categorical(if_max):
136
133
x_m = pt .max (x , axis = - 1 )
137
134
x_m_value = pt .vector ("x_max_value" )
138
135
else :
139
- x_min = pt .min (x , axis = - 1 )
140
- x_m = x_min .owner .inputs [0 ]
136
+ x_m = pt .min (x , axis = - 1 )
141
137
x_m_value = pt .vector ("x_min_value" )
142
138
with pytest .raises (RuntimeError , match = re .escape ("Logprob method not implemented" )):
143
139
x_max_logprob = logp (x_m , x_m_value )
@@ -158,8 +154,7 @@ def test_non_supp_axis(if_max):
158
154
x_m = pt .max (x , axis = - 1 )
159
155
x_m_value = pt .vector ("x_max_value" )
160
156
else :
161
- x_min = pt .min (x , axis = - 1 )
162
- x_m = x_min .owner .inputs [0 ]
157
+ x_m = pt .min (x , axis = - 1 )
163
158
x_m_value = pt .vector ("x_min_value" )
164
159
with pytest .raises (RuntimeError , match = re .escape ("Logprob method not implemented" )):
165
160
x_max_logprob = logp (x_m , x_m_value )
@@ -225,9 +220,8 @@ def test_min_logprob(shape, value, axis):
225
220
x = pt .random .uniform (0 , 1 , size = shape )
226
221
x .name = "x"
227
222
x_min = pt .min (x , axis = axis )
228
- x_min_rv = x_min .owner .inputs [0 ]
229
223
x_min_value = pt .scalar ("x_min_value" )
230
- x_min_logprob = logp (x_min_rv , x_min_value )
224
+ x_min_logprob = logp (x_min , x_min_value )
231
225
232
226
assert_no_rvs (x_min_logprob )
233
227
@@ -250,7 +244,6 @@ def test_min_non_mul_elemwise_fails():
250
244
x = pt .log (pt .random .beta (0 , 1 , size = (3 ,)))
251
245
x .name = "x"
252
246
x_min = pt .min (x , axis = - 1 )
253
- x_min_rv = x_min .owner .inputs [0 ]
254
247
x_min_value = pt .vector ("x_min_value" )
255
248
with pytest .raises (RuntimeError , match = re .escape ("Logprob method not implemented" )):
256
- x_min_logprob = logp (x_min_rv , x_min_value )
249
+ x_min_logprob = logp (x_min , x_min_value )
0 commit comments