diff --git a/test-data/stdlib-samples/3.2/random.py b/test-data/stdlib-samples/3.2/random.py index 5cb579eb9fb6..78f38f04ba98 100644 --- a/test-data/stdlib-samples/3.2/random.py +++ b/test-data/stdlib-samples/3.2/random.py @@ -362,7 +362,7 @@ def triangular(self, low: float = 0.0, high: float = 1.0, u = 1.0 - u c = 1.0 - c low, high = high, low - return low + (high - low) * (u * c) ** 0.5 + return low + (high - low) * cast(float, (u * c) ** 0.5) ## -------------------- normal distribution -------------------- @@ -531,12 +531,12 @@ def gammavariate(self, alpha: float, beta: float) -> float: b = (_e + alpha)/_e p = b*u if p <= 1.0: - x = p ** (1.0/alpha) + x = cast(float, p ** (1.0/alpha)) else: x = -_log((b-p)/alpha) u1 = random() if p > 1.0: - if u1 <= x ** (alpha - 1.0): + if u1 <= cast(float, x ** (alpha - 1.0)): break elif u1 <= _exp(-x): break @@ -620,7 +620,7 @@ def paretovariate(self, alpha: float) -> float: # Jain, pg. 495 u = 1.0 - self.random() - return 1.0 / u ** (1.0/alpha) + return 1.0 / cast(float, u ** (1.0/alpha)) ## -------------------- Weibull -------------------- @@ -633,7 +633,7 @@ def weibullvariate(self, alpha: float, beta: float) -> float: # Jain, pg. 499; bug fix courtesy Bill Arms u = 1.0 - self.random() - return alpha * (-_log(u)) ** (1.0/beta) + return alpha * cast(float, (-_log(u)) ** (1.0/beta)) ## --------------- Operating System Random Source ------------------ diff --git a/test-data/stdlib-samples/3.2/test/test_random.py b/test-data/stdlib-samples/3.2/test/test_random.py index 5989ceeee2bb..3ed0cda55d07 100644 --- a/test-data/stdlib-samples/3.2/test/test_random.py +++ b/test-data/stdlib-samples/3.2/test/test_random.py @@ -418,13 +418,13 @@ def test_randrange_bug_1590891(self) -> None: self.assertTrue(stop < x <= start) self.assertEqual((x+stop)%step, 0) -def gamma(z: float, sqrt2pi: float = (2.0*pi)**0.5) -> float: +def gamma(z: float, sqrt2pi: float = cast(float, (2.0*pi)**0.5)) -> float: # Reflection to right half of complex plane if z < 0.5: return pi / sin(pi*z) / gamma(1.0-z) # Lanczos approximation with g=7 az = z + (7.0 - 0.5) - return az ** (z-0.5) / exp(az) * sqrt2pi * fsum([ + return cast(float, az ** (z-0.5)) / exp(az) * sqrt2pi * fsum([ 0.9999999999995183, 676.5203681218835 / z, -1259.139216722289 / (z+1.0),