@@ -1156,7 +1156,7 @@ msgid ""
1156
1156
"random variable *X* will be near the given value *x*. Mathematically, it is "
1157
1157
"the limit of the ratio ``P(x <= X < x+dx) / dx`` as *dx* approaches zero."
1158
1158
msgstr ""
1159
- "利用\\ `機率密度函式 (probability density function, pdf) <https://en."
1159
+ "利用\\ `機率密度函數 (probability density function, pdf) <https://en."
1160
1160
"wikipedia.org/wiki/Probability_density_function>`_ 計算隨機變數 *X* 接近給定"
1161
1161
"值 *x* 的相對概度 (relative likelihood)。數學上,它是比率 ``P(x <= X < "
1162
1162
"x+dx) / dx`` 在 *dx* 趨近於零時的極限值。"
@@ -1277,7 +1277,7 @@ msgstr ":class:`NormalDist` 範例與錦囊妙計"
1277
1277
1278
1278
#: ../../library/statistics.rst:927
1279
1279
msgid "Classic probability problems"
1280
- msgstr ""
1280
+ msgstr "經典機率問題 "
1281
1281
1282
1282
#: ../../library/statistics.rst:929
1283
1283
msgid ":class:`NormalDist` readily solves classic probability problems."
@@ -1305,7 +1305,7 @@ msgstr ""
1305
1305
1306
1306
#: ../../library/statistics.rst:956
1307
1307
msgid "Monte Carlo inputs for simulations"
1308
- msgstr ""
1308
+ msgstr "用於模擬的蒙地卡羅 (Monte Carlo) 輸入 "
1309
1309
1310
1310
#: ../../library/statistics.rst:958
1311
1311
msgid ""
@@ -1314,12 +1314,12 @@ msgid ""
1314
1314
"Carlo simulation <https://en.wikipedia.org/wiki/Monte_Carlo_method>`_:"
1315
1315
msgstr ""
1316
1316
"欲估計一個不易透過解析方法求解的模型的分布,:class:`NormalDist` 可以產生輸入"
1317
- "樣本以進行 `Monte Carlo 模擬 <https://en.wikipedia.org/wiki/"
1317
+ "樣本以進行\\ `蒙地卡羅模擬 <https://en.wikipedia.org/wiki/"
1318
1318
"Monte_Carlo_method>`_:"
1319
1319
1320
1320
#: ../../library/statistics.rst:975
1321
1321
msgid "Approximating binomial distributions"
1322
- msgstr ""
1322
+ msgstr "近似二項分布 "
1323
1323
1324
1324
#: ../../library/statistics.rst:977
1325
1325
msgid ""
@@ -1346,7 +1346,7 @@ msgstr ""
1346
1346
1347
1347
#: ../../library/statistics.rst:1016
1348
1348
msgid "Naive bayesian classifier"
1349
- msgstr ""
1349
+ msgstr "單純貝氏分類器 (Naive bayesian classifier) "
1350
1350
1351
1351
#: ../../library/statistics.rst:1018
1352
1352
msgid "Normal distributions commonly arise in machine learning problems."
@@ -1401,13 +1401,13 @@ msgstr ""
1401
1401
1402
1402
#: ../../library/statistics.rst:1073
1403
1403
msgid "Kernel density estimation"
1404
- msgstr ""
1404
+ msgstr "核密度估計 (Kernel density estimation) "
1405
1405
1406
1406
#: ../../library/statistics.rst:1075
1407
1407
msgid ""
1408
1408
"It is possible to estimate a continuous probability density function from a "
1409
1409
"fixed number of discrete samples."
1410
- msgstr ""
1410
+ msgstr "可以從固定數量的離散樣本估計出連續機率密度函式。 "
1411
1411
1412
1412
#: ../../library/statistics.rst:1078
1413
1413
msgid ""
@@ -1418,6 +1418,9 @@ msgid ""
1418
1418
"smoothing is controlled by a single parameter, ``h``, representing the "
1419
1419
"variance of the kernel function."
1420
1420
msgstr ""
1421
+ "基本想法是使用\\ `一個核函式如常態分布、三角分布或均勻分布 <https://en."
1422
+ "wikipedia.org/wiki/Kernel_(statistics)#Kernel_functions_in_common_use>`_\\ 來"
1423
+ "使資料更加平滑。平滑程度由單個參數 ``h`` 控制,代表核函數的變異數。"
1421
1424
1422
1425
#: ../../library/statistics.rst:1097
1423
1426
msgid ""
@@ -1426,11 +1429,14 @@ msgid ""
1426
1429
"recipe to generate and plot a probability density function estimated from a "
1427
1430
"small sample:"
1428
1431
msgstr ""
1432
+ "`維基百科有一個範例 <https://en.wikipedia.org/wiki/"
1433
+ "Kernel_density_estimation#Example>`_,我們可以使用 ``kde_normal()`` 這個錦囊"
1434
+ "妙計來生成並繪製從小樣本估計的機率密度函式:"
1429
1435
1430
1436
#: ../../library/statistics.rst:1109
1431
1437
msgid "The points in ``xarr`` and ``yarr`` can be used to make a PDF plot:"
1432
- msgstr ""
1438
+ msgstr "``xarr`` 和 ``yarr`` 中的點可用於繪製 PDF 圖: "
1433
1439
1434
1440
#: ../../library/statistics.rst: -1
1435
1441
msgid "Scatter plot of the estimated probability density function."
1436
- msgstr ""
1442
+ msgstr "估計機率密度函式的散點圖 (scatter plot)。 "
0 commit comments