Skip to content

Commit 84a0fc5

Browse files
authored
feat(library/statistics): translate newly-added strings (#627)
1 parent e119d02 commit 84a0fc5

File tree

1 file changed

+16
-10
lines changed

1 file changed

+16
-10
lines changed

library/statistics.po

Lines changed: 16 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -1156,7 +1156,7 @@ msgid ""
11561156
"random variable *X* will be near the given value *x*. Mathematically, it is "
11571157
"the limit of the ratio ``P(x <= X < x+dx) / dx`` as *dx* approaches zero."
11581158
msgstr ""
1159-
"利用\\ `機率密度函式 (probability density function, pdf) <https://en."
1159+
"利用\\ `機率密度函數 (probability density function, pdf) <https://en."
11601160
"wikipedia.org/wiki/Probability_density_function>`_ 計算隨機變數 *X* 接近給定"
11611161
"值 *x* 的相對概度 (relative likelihood)。數學上,它是比率 ``P(x <= X < "
11621162
"x+dx) / dx`` 在 *dx* 趨近於零時的極限值。"
@@ -1277,7 +1277,7 @@ msgstr ":class:`NormalDist` 範例與錦囊妙計"
12771277

12781278
#: ../../library/statistics.rst:927
12791279
msgid "Classic probability problems"
1280-
msgstr ""
1280+
msgstr "經典機率問題"
12811281

12821282
#: ../../library/statistics.rst:929
12831283
msgid ":class:`NormalDist` readily solves classic probability problems."
@@ -1305,7 +1305,7 @@ msgstr ""
13051305

13061306
#: ../../library/statistics.rst:956
13071307
msgid "Monte Carlo inputs for simulations"
1308-
msgstr ""
1308+
msgstr "用於模擬的蒙地卡羅 (Monte Carlo) 輸入"
13091309

13101310
#: ../../library/statistics.rst:958
13111311
msgid ""
@@ -1314,12 +1314,12 @@ msgid ""
13141314
"Carlo simulation <https://en.wikipedia.org/wiki/Monte_Carlo_method>`_:"
13151315
msgstr ""
13161316
"欲估計一個不易透過解析方法求解的模型的分布,:class:`NormalDist` 可以產生輸入"
1317-
"樣本以進行 `Monte Carlo 模擬 <https://en.wikipedia.org/wiki/"
1317+
"樣本以進行\\ `蒙地卡羅模擬 <https://en.wikipedia.org/wiki/"
13181318
"Monte_Carlo_method>`_:"
13191319

13201320
#: ../../library/statistics.rst:975
13211321
msgid "Approximating binomial distributions"
1322-
msgstr ""
1322+
msgstr "近似二項分布"
13231323

13241324
#: ../../library/statistics.rst:977
13251325
msgid ""
@@ -1346,7 +1346,7 @@ msgstr ""
13461346

13471347
#: ../../library/statistics.rst:1016
13481348
msgid "Naive bayesian classifier"
1349-
msgstr ""
1349+
msgstr "單純貝氏分類器 (Naive bayesian classifier)"
13501350

13511351
#: ../../library/statistics.rst:1018
13521352
msgid "Normal distributions commonly arise in machine learning problems."
@@ -1401,13 +1401,13 @@ msgstr ""
14011401

14021402
#: ../../library/statistics.rst:1073
14031403
msgid "Kernel density estimation"
1404-
msgstr ""
1404+
msgstr "核密度估計 (Kernel density estimation)"
14051405

14061406
#: ../../library/statistics.rst:1075
14071407
msgid ""
14081408
"It is possible to estimate a continuous probability density function from a "
14091409
"fixed number of discrete samples."
1410-
msgstr ""
1410+
msgstr "可以從固定數量的離散樣本估計出連續機率密度函式。"
14111411

14121412
#: ../../library/statistics.rst:1078
14131413
msgid ""
@@ -1418,6 +1418,9 @@ msgid ""
14181418
"smoothing is controlled by a single parameter, ``h``, representing the "
14191419
"variance of the kernel function."
14201420
msgstr ""
1421+
"基本想法是使用\\ `一個核函式如常態分布、三角分布或均勻分布 <https://en."
1422+
"wikipedia.org/wiki/Kernel_(statistics)#Kernel_functions_in_common_use>`_\\ 來"
1423+
"使資料更加平滑。平滑程度由單個參數 ``h`` 控制,代表核函數的變異數。"
14211424

14221425
#: ../../library/statistics.rst:1097
14231426
msgid ""
@@ -1426,11 +1429,14 @@ msgid ""
14261429
"recipe to generate and plot a probability density function estimated from a "
14271430
"small sample:"
14281431
msgstr ""
1432+
"`維基百科有一個範例 <https://en.wikipedia.org/wiki/"
1433+
"Kernel_density_estimation#Example>`_,我們可以使用 ``kde_normal()`` 這個錦囊"
1434+
"妙計來生成並繪製從小樣本估計的機率密度函式:"
14291435

14301436
#: ../../library/statistics.rst:1109
14311437
msgid "The points in ``xarr`` and ``yarr`` can be used to make a PDF plot:"
1432-
msgstr ""
1438+
msgstr "``xarr`` 和 ``yarr`` 中的點可用於繪製 PDF 圖:"
14331439

14341440
#: ../../library/statistics.rst:-1
14351441
msgid "Scatter plot of the estimated probability density function."
1436-
msgstr ""
1442+
msgstr "估計機率密度函式的散點圖 (scatter plot)。"

0 commit comments

Comments
 (0)