-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathmain.py
208 lines (179 loc) · 6.18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
from pprint import pformat
from typing import Any, cast
import ignite.distributed as idist
import yaml
from data import setup_data
from ignite.contrib.handlers import LRScheduler, PiecewiseLinear
from ignite.engine import Events
from ignite.metrics import Accuracy, Loss
from ignite.utils import manual_seed
from model import TransformerModel
from torch import nn, optim
from torch.optim.lr_scheduler import _LRScheduler
from trainers import setup_evaluator, setup_trainer
from utils import *
os.environ[
"TOKENIZERS_PARALLELISM"
] = "false" # remove tokenizer paralleism warning
def run(local_rank: int, config: Any):
# make a certain seed
rank = idist.get_rank()
manual_seed(config.seed + rank)
# create output folder
config.output_dir = setup_output_dir(config, rank)
# donwload datasets and create dataloaders
dataloader_train, dataloader_eval = setup_data(config)
config.num_iters_per_epoch = len(dataloader_train)
# model, optimizer, loss function, device
device = idist.device()
model = idist.auto_model(
TransformerModel(
config.model,
config.model_dir,
config.drop_out,
config.n_fc,
config.num_classes,
)
)
config.lr *= idist.get_world_size()
optimizer = idist.auto_optim(
optim.AdamW(
model.parameters(), lr=config.lr, weight_decay=config.weight_decay
)
)
loss_fn = nn.BCEWithLogitsLoss().to(device=device)
le = config.num_iters_per_epoch
milestones_values = [
(0, 0.0),
(le * config.num_warmup_epochs, config.lr),
(le * config.max_epochs, 0.0),
]
lr_scheduler = PiecewiseLinear(
optimizer, param_name="lr", milestones_values=milestones_values
)
# setup metrics to attach to evaluator
metrics = {
"Accuracy": Accuracy(output_transform=thresholded_output_transform),
"Loss": Loss(loss_fn),
}
# trainer and evaluator
trainer = setup_trainer(
config, model, optimizer, loss_fn, device, dataloader_train.sampler
)
evaluator = setup_evaluator(config, model, metrics, device)
# setup engines logger with python logging
# print training configurations
logger = setup_logging(config)
logger.info("Configuration: \n%s", pformat(vars(config)))
(config.output_dir / "config-lock.yaml").write_text(yaml.dump(config))
trainer.logger = evaluator.logger = logger
if isinstance(lr_scheduler, _LRScheduler):
trainer.add_event_handler(
Events.ITERATION_COMPLETED,
lambda engine: cast(_LRScheduler, lr_scheduler).step(),
)
elif isinstance(lr_scheduler, LRScheduler):
trainer.add_event_handler(Events.ITERATION_COMPLETED, lr_scheduler)
else:
trainer.add_event_handler(Events.ITERATION_STARTED, lr_scheduler)
# setup ignite handlers
#::: if (it.save_training || it.save_evaluation) { :::#
#::: if (it.save_training) { :::#
to_save_train = {
"model": model,
"optimizer": optimizer,
"trainer": trainer,
"lr_scheduler": lr_scheduler,
}
#::: } else { :::#
to_save_train = None
#::: } :::#
#::: if (it.save_evaluation) { :::#
to_save_eval = {"model": model}
#::: } else { :::#
to_save_eval = None
#::: } :::#
ckpt_handler_train, ckpt_handler_eval = setup_handlers(
trainer, evaluator, config, to_save_train, to_save_eval
)
#::: } else if (it.patience || it.terminate_on_nan || it.limit_sec) { :::#
setup_handlers(trainer, evaluator, config)
#::: } :::#
#::: if (it.logger) { :::#
# experiment tracking
if rank == 0:
exp_logger = setup_exp_logging(config, trainer, optimizer, evaluator)
#::: } :::#
# print metrics to the stderr
# with `add_event_handler` API
# for training stats
trainer.add_event_handler(
Events.ITERATION_COMPLETED(every=config.log_every_iters),
log_metrics,
tag="train",
)
# run evaluation at every training epoch end
# with shortcut `on` decorator API and
# print metrics to the stderr
# again with `add_event_handler` API
# for evaluation stats
@trainer.on(Events.EPOCH_COMPLETED(every=1))
def _():
evaluator.run(dataloader_eval, epoch_length=config.eval_epoch_length)
log_metrics(evaluator, "eval")
# let's try run evaluation first as a sanity check
@trainer.on(Events.STARTED)
def _():
evaluator.run(dataloader_eval, epoch_length=config.eval_epoch_length)
# setup if done. let's run the training
trainer.run(
dataloader_train,
max_epochs=config.max_epochs,
epoch_length=config.train_epoch_length,
)
#::: if (it.logger) { :::#
# close logger
if rank == 0:
from ignite.contrib.handlers.wandb_logger import WandBLogger
if isinstance(exp_logger, WandBLogger):
# why handle differently for wandb?
# See: https://github.com/pytorch/ignite/issues/1894
exp_logger.finish()
elif exp_logger:
exp_logger.close()
#::: } :::#
#::: if (it.save_training || it.save_evaluation) { :::#
# show last checkpoint names
logger.info(
"Last training checkpoint name - %s",
ckpt_handler_train.last_checkpoint,
)
logger.info(
"Last evaluation checkpoint name - %s",
ckpt_handler_eval.last_checkpoint,
)
#::: } :::#
# main entrypoint
def main():
config = setup_parser().parse_args()
#::: if (it.dist === 'spawn') { :::#
#::: if (it.nproc_per_node && it.nnodes > 1 && it.master_addr && it.master_port) { :::#
kwargs = {
"nproc_per_node": config.nproc_per_node,
"nnodes": config.nnodes,
"node_rank": config.node_rank,
"master_addr": config.master_addr,
"master_port": config.master_port,
}
#::: } else if (it.nproc_per_node) { :::#
kwargs = {"nproc_per_node": config.nproc_per_node}
#::: } :::#
with idist.Parallel(config.backend, **kwargs) as p:
p.run(run, config=config)
#::: } else { :::#
with idist.Parallel(config.backend) as p:
p.run(run, config=config)
#::: } :::#
if __name__ == "__main__":
main()