-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtest_all.py
332 lines (301 loc) · 13.5 KB
/
test_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import logging
import unittest
from argparse import ArgumentParser, Namespace
from pathlib import Path
from tempfile import TemporaryDirectory
from unittest.mock import MagicMock
import ignite.distributed as idist
import torch
from config import get_default_parser
from datasets import get_datasets
from ignite.contrib.handlers import (
ClearMLLogger,
MLflowLogger,
NeptuneLogger,
PolyaxonLogger,
TensorboardLogger,
VisdomLogger,
WandBLogger,
)
from ignite.contrib.handlers.base_logger import BaseLogger
from ignite.contrib.handlers.param_scheduler import ParamScheduler
from ignite.engine import Engine
from ignite.handlers.checkpoint import Checkpoint
from ignite.handlers.early_stopping import EarlyStopping
from ignite.handlers.timing import Timer
from ignite.utils import setup_logger
from torch import nn, optim
from torch.optim.lr_scheduler import _LRScheduler
from torch.utils.data import Dataset
from trainers import (
TrainEvents,
create_trainers,
evaluate_function,
train_events_to_attr,
train_function,
)
from utils import hash_checkpoint, initialize, log_metrics, resume_from, setup_logging, get_handlers, get_logger
class TestDataset(unittest.TestCase):
def test_get_datasets(self):
with TemporaryDirectory() as tmp:
train_ds, eval_ds = get_datasets(tmp)
assert isinstance(train_ds, Dataset)
assert isinstance(eval_ds, Dataset)
class TestHandlers(unittest.TestCase):
"""Testing handlers.py"""
def test_get_handlers(self):
train_engine = Engine(lambda e, b: b)
with TemporaryDirectory() as tmp:
tmp = Path(tmp)
config = Namespace(
output_dir=tmp,
save_every_iters=1,
n_saved=2,
log_every_iters=1,
with_pbars=False,
with_pbar_on_iters=False,
stop_on_nan=False,
clear_cuda_cache=False,
with_gpu_stats=False,
patience=1,
limit_sec=30,
)
bm_handler, es_handler, timer_handler = get_handlers(
config=config,
model=nn.Linear(1, 1),
train_engine=train_engine,
eval_engine=train_engine,
metric_name="eval_loss",
es_metric_name="eval_loss",
)
self.assertIsInstance(bm_handler, (type(None), Checkpoint), "Should be Checkpoint or None")
self.assertIsInstance(es_handler, (type(None), EarlyStopping), "Should be EarlyStopping or None")
self.assertIsInstance(timer_handler, (type(None), Timer), "Shoulde be Timer or None")
def test_get_logger(self):
with TemporaryDirectory() as tmp:
config = Namespace(output_dir=tmp, logger_log_every_iters=1)
train_engine = Engine(lambda e, b: b)
optimizer = optim.Adam(nn.Linear(1, 1).parameters())
logger_handler = get_logger(
config=config,
train_engine=train_engine,
eval_engine=train_engine,
optimizers=optimizer,
)
self.assertIsInstance(
logger_handler,
(
BaseLogger,
ClearMLLogger,
MLflowLogger,
NeptuneLogger,
PolyaxonLogger,
TensorboardLogger,
VisdomLogger,
WandBLogger,
type(None),
),
"Should be Ignite provided loggers or None",
)
class TestEngines(unittest.TestCase):
"""Testing for engines.py"""
def setUp(self):
self.model = nn.Linear(1, 1)
self.optimizer = optim.Adam(self.model.parameters())
self.device = idist.device()
self.loss_fn = nn.MSELoss()
self.batch = [torch.tensor([1.0]), torch.tensor([1.0])]
def test_train_fn(self):
engine = Engine(lambda e, b: 1)
engine.register_events(*TrainEvents, event_to_attr=train_events_to_attr)
backward = MagicMock()
optim = MagicMock()
engine.add_event_handler(TrainEvents.BACKWARD_COMPLETED, backward)
engine.add_event_handler(TrainEvents.OPTIM_STEP_COMPLETED, optim)
config = Namespace(use_amp=False)
output = train_function(config, engine, self.batch, self.model, self.loss_fn, self.optimizer, self.device)
self.assertIsInstance(output, dict)
self.assertTrue(hasattr(engine.state, "backward_completed"))
self.assertTrue(hasattr(engine.state, "optim_step_completed"))
self.assertEqual(engine.state.backward_completed, 1)
self.assertEqual(engine.state.optim_step_completed, 1)
self.assertEqual(backward.call_count, 1)
self.assertEqual(optim.call_count, 1)
self.assertTrue(backward.called)
self.assertTrue(optim.called)
def test_train_fn_event_filter(self):
config = Namespace(use_amp=False)
engine = Engine(
lambda e, b: train_function(config, e, b, self.model, self.loss_fn, self.optimizer, self.device)
)
engine.register_events(*TrainEvents, event_to_attr=train_events_to_attr)
backward = MagicMock()
optim = MagicMock()
engine.add_event_handler(
TrainEvents.BACKWARD_COMPLETED(event_filter=lambda _, x: (x % 2 == 0) or x == 3), backward
)
engine.add_event_handler(
TrainEvents.OPTIM_STEP_COMPLETED(event_filter=lambda _, x: (x % 2 == 0) or x == 3), optim
)
engine.run([self.batch] * 5)
self.assertTrue(hasattr(engine.state, "backward_completed"))
self.assertTrue(hasattr(engine.state, "optim_step_completed"))
self.assertEqual(engine.state.backward_completed, 5)
self.assertEqual(engine.state.optim_step_completed, 5)
self.assertEqual(backward.call_count, 3)
self.assertEqual(optim.call_count, 3)
self.assertTrue(backward.called)
self.assertTrue(optim.called)
def test_train_fn_every(self):
config = Namespace(use_amp=False)
engine = Engine(
lambda e, b: train_function(config, e, b, self.model, self.loss_fn, self.optimizer, self.device)
)
engine.register_events(*TrainEvents, event_to_attr=train_events_to_attr)
backward = MagicMock()
optim = MagicMock()
engine.add_event_handler(TrainEvents.BACKWARD_COMPLETED(every=2), backward)
engine.add_event_handler(TrainEvents.OPTIM_STEP_COMPLETED(every=2), optim)
engine.run([self.batch] * 5)
self.assertTrue(hasattr(engine.state, "backward_completed"))
self.assertTrue(hasattr(engine.state, "optim_step_completed"))
self.assertEqual(engine.state.backward_completed, 5)
self.assertEqual(engine.state.optim_step_completed, 5)
self.assertEqual(backward.call_count, 2)
self.assertEqual(optim.call_count, 2)
self.assertTrue(backward.called)
self.assertTrue(optim.called)
def test_train_fn_once(self):
config = Namespace(use_amp=False)
engine = Engine(
lambda e, b: train_function(config, e, b, self.model, self.loss_fn, self.optimizer, self.device)
)
engine.register_events(*TrainEvents, event_to_attr=train_events_to_attr)
backward = MagicMock()
optim = MagicMock()
engine.add_event_handler(TrainEvents.BACKWARD_COMPLETED(once=3), backward)
engine.add_event_handler(TrainEvents.OPTIM_STEP_COMPLETED(once=3), optim)
engine.run([self.batch] * 5)
self.assertTrue(hasattr(engine.state, "backward_completed"))
self.assertTrue(hasattr(engine.state, "optim_step_completed"))
self.assertEqual(engine.state.backward_completed, 5)
self.assertEqual(engine.state.optim_step_completed, 5)
self.assertEqual(backward.call_count, 1)
self.assertEqual(optim.call_count, 1)
self.assertTrue(backward.called)
self.assertTrue(optim.called)
def test_evaluate_fn(self):
engine = Engine(lambda e, b: 1)
config = Namespace(use_amp=False)
output = evaluate_function(config, engine, self.batch, self.model, self.device)
self.assertIsInstance(output, tuple)
def test_create_trainers(self):
train_engine, eval_engine = create_trainers(
config=Namespace(use_amp=True),
model=self.model,
loss_fn=self.loss_fn,
optimizer=self.optimizer,
device=self.device,
)
self.assertIsInstance(train_engine, Engine)
self.assertIsInstance(eval_engine, Engine)
self.assertTrue(hasattr(train_engine.state, "backward_completed"))
self.assertTrue(hasattr(train_engine.state, "optim_step_completed"))
class TestUtils(unittest.TestCase):
"""Testing utils.py"""
def test_initialize(self):
config = Namespace(
model="squeezenet1_0",
lr=1e-3,
momentum=0.9,
weight_decay=1e-4,
num_iters_per_epoch=1,
num_warmup_epochs=1,
max_epochs=1,
)
model, optimizer, loss_fn, lr_scheduler = initialize(config)
self.assertIsInstance(model, nn.Module)
self.assertIsInstance(optimizer, optim.Optimizer)
self.assertIsInstance(loss_fn, nn.Module)
self.assertIsInstance(lr_scheduler, (_LRScheduler, ParamScheduler))
def test_get_default_parser(self):
parser = get_default_parser()
self.assertIsInstance(parser, ArgumentParser)
self.assertFalse(parser.add_help)
def test_log_metrics(self):
engine = Engine(lambda e, b: None)
engine.logger = setup_logger(format="%(message)s")
engine.run(list(range(100)), max_epochs=2)
with self.assertLogs() as log:
log_metrics(engine, "train")
self.assertEqual(log.output[0], "INFO:root:train [2/200]: {}")
def test_setup_logging(self):
with TemporaryDirectory() as tmp:
tmp = Path(tmp)
config = Namespace(verbose=True, output_dir=tmp)
logger = setup_logging(config)
self.assertEqual(logger.level, logging.INFO)
self.assertIsInstance(logger, logging.Logger)
self.assertTrue(next(tmp.rglob("*.log")).is_file())
def test_hash_checkpoint(self):
with TemporaryDirectory() as tmp:
# download lightweight model
model = torch.hub.load("pytorch/vision", "squeezenet1_0")
# jit it
scripted_model = torch.jit.script(model)
# save jitted model : find a jitted checkpoint
torch.jit.save(scripted_model, f"{tmp}/squeezenet1_0.ckptc")
# download un-jitted model
torch.hub.download_url_to_file(
"https://download.pytorch.org/models/squeezenet1_0-b66bff10.pth",
f"{tmp}/squeezenet1_0.ckpt",
)
checkpoint = f"{tmp}/squeezenet1_0.ckpt"
hashed_fp, sha_hash = hash_checkpoint(checkpoint, False, tmp)
model.load_state_dict(torch.load(hashed_fp), True)
self.assertEqual(sha_hash[:8], "b66bff10")
self.assertEqual(hashed_fp.name, f"squeezenet1_0-{sha_hash[:8]}.pt")
checkpoint = f"{tmp}/squeezenet1_0.ckptc"
hashed_fp, sha_hash = hash_checkpoint(checkpoint, True, tmp)
scripted_model = torch.jit.load(hashed_fp)
self.assertEqual(hashed_fp.name, f"squeezenet1_0-{sha_hash[:8]}.ptc")
def test_resume_from_url(self):
logger = logging.getLogger()
logging.basicConfig(level=logging.INFO)
with TemporaryDirectory() as tmp:
checkpoint_fp = "https://download.pytorch.org/models/squeezenet1_0-b66bff10.pth"
model = torch.hub.load("pytorch/vision", "squeezenet1_0")
to_load = {"model": model}
with self.assertLogs() as log:
resume_from(to_load, checkpoint_fp, logger, model_dir=tmp)
self.assertRegex(log.output[0], r"Successfully resumed from a checkpoint", "checkpoint fail to load")
def test_resume_from_fp(self):
logger = logging.getLogger()
logging.basicConfig(level=logging.INFO)
with TemporaryDirectory() as tmp:
torch.hub.download_url_to_file(
"https://download.pytorch.org/models/squeezenet1_0-b66bff10.pth",
f"{tmp}/squeezenet1_0.pt",
)
checkpoint_fp = f"{tmp}/squeezenet1_0.pt"
model = torch.hub.load("pytorch/vision", "squeezenet1_0")
to_load = {"model": model}
with self.assertLogs() as log:
resume_from(to_load, checkpoint_fp, logger)
self.assertRegex(log.output[0], r"Successfully resumed from a checkpoint", "checkpoint fail to load")
with TemporaryDirectory() as tmp:
torch.hub.download_url_to_file(
"https://download.pytorch.org/models/squeezenet1_0-b66bff10.pth",
f"{tmp}/squeezenet1_0.pt",
)
checkpoint_fp = Path(f"{tmp}/squeezenet1_0.pt")
model = torch.hub.load("pytorch/vision", "squeezenet1_0")
to_load = {"model": model}
with self.assertLogs() as log:
resume_from(to_load, checkpoint_fp, logger)
self.assertRegex(log.output[0], r"Successfully resumed from a checkpoint", "checkpoint fail to load")
def test_resume_from_error(self):
with self.assertRaisesRegex(FileNotFoundError, r"Given \w+ does not exist"):
resume_from({}, "abcdef/", None)
if __name__ == "__main__":
unittest.main(verbosity=2)