|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +import torch |
| 8 | +from torch._inductor.utils import do_bench_using_profiling |
| 9 | + |
| 10 | + |
| 11 | +class SweepHeuristics: |
| 12 | + def __init__(self): |
| 13 | + self.m = 1 |
| 14 | + self.block_dims = [ |
| 15 | + (32, 1), |
| 16 | + (32, 4), |
| 17 | + (32, 8), |
| 18 | + (32, 16), |
| 19 | + (32, 32), |
| 20 | + (64, 1), |
| 21 | + (64, 2), |
| 22 | + (64, 4), |
| 23 | + (64, 8), |
| 24 | + (64, 16), |
| 25 | + (128, 1), |
| 26 | + (128, 2), |
| 27 | + (128, 4), |
| 28 | + (128, 8), |
| 29 | + (256, 1), |
| 30 | + (256, 2), |
| 31 | + (256, 4), |
| 32 | + (512, 1), |
| 33 | + (512, 2), |
| 34 | + (1024, 1), |
| 35 | + ] |
| 36 | + self.nks = [(1280, 8192), (8192, 1024), (7168, 8192), (8192, 3584)] |
| 37 | + |
| 38 | + def sweep_heuristics(self) -> None: |
| 39 | + for n, k in self.nks: |
| 40 | + x = torch.randn(size=(self.m, k), dtype=torch.half, device="cuda") |
| 41 | + w = torch.randn(size=(n, k), dtype=torch.half, device="cuda") |
| 42 | + best_elapsed_time, best_block_dim_x, best_block_dim_y = None, None, None |
| 43 | + |
| 44 | + for block_dim_x, block_dim_y in self.block_dims: |
| 45 | + if ( |
| 46 | + (k % block_dim_x != 0) |
| 47 | + or (n % block_dim_x != 0) |
| 48 | + or ((k / block_dim_x) % 8 != 0) |
| 49 | + ): |
| 50 | + continue |
| 51 | + # This requires |
| 52 | + # 1. update for testing purpose for `fp16_fast_gemv` pytorch custom op to pass in block_dim_x and block_dim_y |
| 53 | + # 2. modify the fp16_fast_gemv.cu kernel signature to reflect the block_dim heuristics |
| 54 | + # https://www.internalfb.com/code/fbsource/[bafd6390bc8c842b46d81be1a27dafd384503a53]/fbcode/deeplearning/fbgemm/fbgemm_gpu/experimental/gen_ai/bench/quantize_ops.py?lines=365 |
| 55 | + res = do_bench_using_profiling( |
| 56 | + lambda: torch.ops.fbgemm.fp16_fast_gemv( |
| 57 | + x.T, w, block_dim_x=block_dim_x, block_dim_y=block_dim_y |
| 58 | + ) |
| 59 | + ) |
| 60 | + |
| 61 | + if best_elapsed_time is None or res < best_elapsed_time: |
| 62 | + best_elapsed_time, best_block_dim_x, best_block_dim_y = ( |
| 63 | + res, |
| 64 | + block_dim_x, |
| 65 | + block_dim_y, |
| 66 | + ) |
| 67 | + if best_elapsed_time is None: |
| 68 | + print("Error: No valid elapsed time found. Exiting the function.") |
| 69 | + return |
| 70 | + bw = ( |
| 71 | + (self.m * k * 2 + n * k * 2 + self.m * n * 2) |
| 72 | + / (best_elapsed_time / 1000) |
| 73 | + / (1024**3) |
| 74 | + ) |
| 75 | + |
| 76 | + print(f"best elapsed time: {best_elapsed_time} ms") |
| 77 | + print(f"best block_dim_x: {best_block_dim_x}") |
| 78 | + print(f"best block_dim_y: {best_block_dim_y}") |
| 79 | + print(f"best bw: {bw} GB/s") |
| 80 | + |
| 81 | + |
| 82 | +sweep_instance = SweepHeuristics() |
| 83 | +sweep_instance.sweep_heuristics() |
0 commit comments