@@ -2818,9 +2818,43 @@ def aten_ops_pad(
2818
2818
)
2819
2819
2820
2820
2821
+ @dynamo_tensorrt_converter (torch .ops .aten .upsample_nearest1d .default )
2821
2822
@dynamo_tensorrt_converter (torch .ops .aten .upsample_nearest2d .default )
2823
+ @dynamo_tensorrt_converter (torch .ops .aten .upsample_nearest3d .default )
2824
+ @enforce_tensor_types (
2825
+ {
2826
+ 0 : (TRTTensor ,),
2827
+ }
2828
+ )
2829
+ def aten_ops_upsample_nearest_default (
2830
+ ctx : ConversionContext ,
2831
+ target : Target ,
2832
+ args : Tuple [Argument , ...],
2833
+ kwargs : Dict [str , Argument ],
2834
+ name : str ,
2835
+ ) -> Union [TRTTensor , Sequence [TRTTensor ]]:
2836
+ return impl .upsample .upsample (
2837
+ ctx ,
2838
+ target ,
2839
+ SourceIR .ATEN ,
2840
+ name ,
2841
+ args [0 ],
2842
+ size = args [1 ],
2843
+ scale_factor = None ,
2844
+ mode = "nearest" ,
2845
+ align_corners = False ,
2846
+ )
2847
+
2848
+
2849
+ @dynamo_tensorrt_converter (torch .ops .aten .upsample_nearest1d .vec )
2822
2850
@dynamo_tensorrt_converter (torch .ops .aten .upsample_nearest2d .vec )
2823
- def upsample_nearest2d (
2851
+ @dynamo_tensorrt_converter (torch .ops .aten .upsample_nearest3d .vec )
2852
+ @enforce_tensor_types (
2853
+ {
2854
+ 0 : (TRTTensor ,),
2855
+ }
2856
+ )
2857
+ def aten_ops_upsample_nearest_vec (
2824
2858
ctx : ConversionContext ,
2825
2859
target : Target ,
2826
2860
args : Tuple [Argument , ...],
@@ -2832,17 +2866,51 @@ def upsample_nearest2d(
2832
2866
target ,
2833
2867
SourceIR .ATEN ,
2834
2868
name ,
2835
- input = args [0 ],
2836
- out_shape = args_bounds_check (args , 1 ),
2837
- scale_factors = args_bounds_check (args , 2 ),
2838
- resize_mode = "nearest" ,
2869
+ args [0 ],
2870
+ size = args_bounds_check (args , 1 ),
2871
+ scale_factor = args_bounds_check (args , 2 ),
2872
+ mode = "nearest" ,
2839
2873
align_corners = False ,
2840
2874
)
2841
2875
2842
2876
2877
+ @dynamo_tensorrt_converter (torch .ops .aten .upsample_linear1d .default )
2843
2878
@dynamo_tensorrt_converter (torch .ops .aten .upsample_bilinear2d .default )
2879
+ @dynamo_tensorrt_converter (torch .ops .aten .upsample_trilinear3d .default )
2880
+ @enforce_tensor_types (
2881
+ {
2882
+ 0 : (TRTTensor ,),
2883
+ }
2884
+ )
2885
+ def aten_ops_upsample_linear_default (
2886
+ ctx : ConversionContext ,
2887
+ target : Target ,
2888
+ args : Tuple [Argument , ...],
2889
+ kwargs : Dict [str , Argument ],
2890
+ name : str ,
2891
+ ) -> Union [TRTTensor , Sequence [TRTTensor ]]:
2892
+ return impl .upsample .upsample (
2893
+ ctx ,
2894
+ target ,
2895
+ SourceIR .ATEN ,
2896
+ name ,
2897
+ args [0 ],
2898
+ size = args [1 ],
2899
+ scale_factor = None ,
2900
+ mode = "linear" ,
2901
+ align_corners = args [2 ],
2902
+ )
2903
+
2904
+
2905
+ @dynamo_tensorrt_converter (torch .ops .aten .upsample_linear1d .vec )
2844
2906
@dynamo_tensorrt_converter (torch .ops .aten .upsample_bilinear2d .vec )
2845
- def upsample_bilinear2d (
2907
+ @dynamo_tensorrt_converter (torch .ops .aten .upsample_trilinear3d .vec )
2908
+ @enforce_tensor_types (
2909
+ {
2910
+ 0 : (TRTTensor ,),
2911
+ }
2912
+ )
2913
+ def aten_ops_upsample_linear_vec (
2846
2914
ctx : ConversionContext ,
2847
2915
target : Target ,
2848
2916
args : Tuple [Argument , ...],
@@ -2854,11 +2922,63 @@ def upsample_bilinear2d(
2854
2922
target ,
2855
2923
SourceIR .ATEN ,
2856
2924
name ,
2857
- input = args [0 ],
2858
- out_shape = args_bounds_check (args , 1 ),
2859
- scale_factors = args_bounds_check (args , 3 ),
2860
- resize_mode = "bilinear" ,
2861
- align_corners = args_bounds_check (args , 2 ),
2925
+ args [0 ],
2926
+ size = args_bounds_check (args , 1 ),
2927
+ scale_factor = args_bounds_check (args , 3 ),
2928
+ mode = "linear" ,
2929
+ align_corners = args [2 ],
2930
+ )
2931
+
2932
+
2933
+ @dynamo_tensorrt_converter (torch .ops .aten .upsample_bicubic2d .default )
2934
+ @enforce_tensor_types (
2935
+ {
2936
+ 0 : (TRTTensor ,),
2937
+ }
2938
+ )
2939
+ def aten_ops_upsample_bicubic_default (
2940
+ ctx : ConversionContext ,
2941
+ target : Target ,
2942
+ args : Tuple [Argument , ...],
2943
+ kwargs : Dict [str , Argument ],
2944
+ name : str ,
2945
+ ) -> Union [TRTTensor , Sequence [TRTTensor ]]:
2946
+ return impl .upsample .upsample (
2947
+ ctx ,
2948
+ target ,
2949
+ SourceIR .ATEN ,
2950
+ name ,
2951
+ args [0 ],
2952
+ size = args [1 ],
2953
+ scale_factor = None ,
2954
+ mode = "bicubic" ,
2955
+ align_corners = args [2 ],
2956
+ )
2957
+
2958
+
2959
+ @dynamo_tensorrt_converter (torch .ops .aten .upsample_bicubic2d .vec )
2960
+ @enforce_tensor_types (
2961
+ {
2962
+ 0 : (TRTTensor ,),
2963
+ }
2964
+ )
2965
+ def aten_ops_upsample_bicubic_vec (
2966
+ ctx : ConversionContext ,
2967
+ target : Target ,
2968
+ args : Tuple [Argument , ...],
2969
+ kwargs : Dict [str , Argument ],
2970
+ name : str ,
2971
+ ) -> Union [TRTTensor , Sequence [TRTTensor ]]:
2972
+ return impl .upsample .upsample (
2973
+ ctx ,
2974
+ target ,
2975
+ SourceIR .ATEN ,
2976
+ name ,
2977
+ args [0 ],
2978
+ size = args_bounds_check (args , 1 ),
2979
+ scale_factor = args_bounds_check (args , 3 ),
2980
+ mode = "bicubic" ,
2981
+ align_corners = args [2 ],
2862
2982
)
2863
2983
2864
2984
0 commit comments