|
35 | 35 | @pytest.mark.unit
|
36 | 36 | def test_mapping():
|
37 | 37 |
|
38 |
| - model = models.resnet18(pretrained=False).eval().to("cuda") |
39 |
| - model2 = models.resnet18(pretrained=True).eval().to("cuda") |
| 38 | + model = models.resnet18(pretrained=True).eval().to("cuda") |
| 39 | + model2 = models.resnet18(pretrained=False).eval().to("cuda") |
40 | 40 | inputs = [torch.randn((1, 3, 224, 224)).to("cuda")]
|
41 | 41 | trt_input = [
|
42 | 42 | torchtrt.Input(i.shape, dtype=torch.float, format=torch.contiguous_format)
|
@@ -91,8 +91,8 @@ def test_mapping():
|
91 | 91 | @pytest.mark.unit
|
92 | 92 | def test_refit_one_engine_with_weightmap():
|
93 | 93 |
|
94 |
| - model = models.resnet152(pretrained=False).eval().to("cuda") |
95 |
| - model2 = models.resnet152(pretrained=True).eval().to("cuda") |
| 94 | + model = models.resnet18(pretrained=True).eval().to("cuda") |
| 95 | + model2 = models.resnet18(pretrained=False).eval().to("cuda") |
96 | 96 | inputs = [torch.randn((1, 3, 224, 224)).to("cuda")]
|
97 | 97 | enabled_precisions = {torch.float}
|
98 | 98 | debug = False
|
@@ -140,8 +140,8 @@ def test_refit_one_engine_with_weightmap():
|
140 | 140 | @pytest.mark.unit
|
141 | 141 | def test_refit_one_engine_no_map_with_weightmap():
|
142 | 142 |
|
143 |
| - model = models.resnet18(pretrained=False).eval().to("cuda") |
144 |
| - model2 = models.resnet18(pretrained=True).eval().to("cuda") |
| 143 | + model = models.resnet18(pretrained=True).eval().to("cuda") |
| 144 | + model2 = models.resnet18(pretrained=False).eval().to("cuda") |
145 | 145 | inputs = [torch.randn((1, 3, 224, 224)).to("cuda")]
|
146 | 146 | enabled_precisions = {torch.float}
|
147 | 147 | debug = False
|
@@ -191,8 +191,8 @@ def test_refit_one_engine_no_map_with_weightmap():
|
191 | 191 | @pytest.mark.unit
|
192 | 192 | def test_refit_one_engine_with_wrong_weightmap():
|
193 | 193 |
|
194 |
| - model = models.resnet18(pretrained=False).eval().to("cuda") |
195 |
| - model2 = models.resnet18(pretrained=True).eval().to("cuda") |
| 194 | + model = models.resnet18(pretrained=True).eval().to("cuda") |
| 195 | + model2 = models.resnet18(pretrained=False).eval().to("cuda") |
196 | 196 | inputs = [torch.randn((1, 3, 224, 224)).to("cuda")]
|
197 | 197 | enabled_precisions = {torch.float}
|
198 | 198 | debug = False
|
@@ -301,8 +301,8 @@ def test_refit_one_engine_bert_with_weightmap():
|
301 | 301 | @pytest.mark.unit
|
302 | 302 | def test_refit_one_engine_inline_runtime__with_weightmap():
|
303 | 303 | trt_ep_path = os.path.join(tempfile.gettempdir(), "compiled.ep")
|
304 |
| - model = models.resnet18(pretrained=False).eval().to("cuda") |
305 |
| - model2 = models.resnet18(pretrained=True).eval().to("cuda") |
| 304 | + model = models.resnet18(pretrained=True).eval().to("cuda") |
| 305 | + model2 = models.resnet18(pretrained=False).eval().to("cuda") |
306 | 306 | inputs = [torch.randn((1, 3, 224, 224)).to("cuda")]
|
307 | 307 | enabled_precisions = {torch.float}
|
308 | 308 | debug = False
|
@@ -347,8 +347,8 @@ def test_refit_one_engine_inline_runtime__with_weightmap():
|
347 | 347 | @pytest.mark.unit
|
348 | 348 | def test_refit_one_engine_python_runtime_with_weightmap():
|
349 | 349 |
|
350 |
| - model = models.resnet18(pretrained=False).eval().to("cuda") |
351 |
| - model2 = models.resnet18(pretrained=True).eval().to("cuda") |
| 350 | + model = models.resnet18(pretrained=True).eval().to("cuda") |
| 351 | + model2 = models.resnet18(pretrained=False).eval().to("cuda") |
352 | 352 | inputs = [torch.randn((1, 3, 224, 224)).to("cuda")]
|
353 | 353 | enabled_precisions = {torch.float}
|
354 | 354 | debug = False
|
@@ -467,8 +467,8 @@ def forward(self, x):
|
467 | 467 | @pytest.mark.unit
|
468 | 468 | def test_refit_one_engine_without_weightmap():
|
469 | 469 |
|
470 |
| - model = models.resnet18(pretrained=False).eval().to("cuda") |
471 |
| - model2 = models.resnet18(pretrained=True).eval().to("cuda") |
| 470 | + model = models.resnet18(pretrained=True).eval().to("cuda") |
| 471 | + model2 = models.resnet18(pretrained=False).eval().to("cuda") |
472 | 472 | inputs = [torch.randn((1, 3, 224, 224)).to("cuda")]
|
473 | 473 | enabled_precisions = {torch.float}
|
474 | 474 | debug = False
|
@@ -571,8 +571,8 @@ def test_refit_one_engine_bert_without_weightmap():
|
571 | 571 | @pytest.mark.unit
|
572 | 572 | def test_refit_one_engine_inline_runtime_without_weightmap():
|
573 | 573 | trt_ep_path = os.path.join(tempfile.gettempdir(), "compiled.ep")
|
574 |
| - model = models.resnet18(pretrained=False).eval().to("cuda") |
575 |
| - model2 = models.resnet18(pretrained=True).eval().to("cuda") |
| 574 | + model = models.resnet18(pretrained=True).eval().to("cuda") |
| 575 | + model2 = models.resnet18(pretrained=False).eval().to("cuda") |
576 | 576 | inputs = [torch.randn((1, 3, 224, 224)).to("cuda")]
|
577 | 577 | enabled_precisions = {torch.float}
|
578 | 578 | debug = False
|
@@ -617,8 +617,8 @@ def test_refit_one_engine_inline_runtime_without_weightmap():
|
617 | 617 | @pytest.mark.unit
|
618 | 618 | def test_refit_one_engine_python_runtime_without_weightmap():
|
619 | 619 |
|
620 |
| - model = models.resnet18(pretrained=False).eval().to("cuda") |
621 |
| - model2 = models.resnet18(pretrained=True).eval().to("cuda") |
| 620 | + model = models.resnet18(pretrained=True).eval().to("cuda") |
| 621 | + model2 = models.resnet18(pretrained=False).eval().to("cuda") |
622 | 622 | inputs = [torch.randn((1, 3, 224, 224)).to("cuda")]
|
623 | 623 | enabled_precisions = {torch.float}
|
624 | 624 | debug = False
|
|
0 commit comments