|
| 1 | +import json |
| 2 | +import os |
| 3 | +import tempfile |
| 4 | +from dataclasses import dataclass |
| 5 | +from unittest import mock |
| 6 | + |
| 7 | +import pytest |
| 8 | +import torch |
| 9 | + |
| 10 | +from torchao.core.config import ( |
| 11 | + AOBaseConfig, |
| 12 | + VersionMismatchError, |
| 13 | + config_from_dict, |
| 14 | + config_to_dict, |
| 15 | +) |
| 16 | +from torchao.quantization.quant_api import ( |
| 17 | + Float8DynamicActivationFloat8WeightConfig, |
| 18 | + Float8WeightOnlyConfig, |
| 19 | + FPXWeightOnlyConfig, |
| 20 | + GemliteUIntXWeightOnlyConfig, |
| 21 | + Int4DynamicActivationInt4WeightConfig, |
| 22 | + Int4WeightOnlyConfig, |
| 23 | + Int8DynamicActivationInt4WeightConfig, |
| 24 | + Int8DynamicActivationInt8WeightConfig, |
| 25 | + Int8WeightOnlyConfig, |
| 26 | + PerRow, |
| 27 | + UIntXWeightOnlyConfig, |
| 28 | +) |
| 29 | +from torchao.sparsity.sparse_api import BlockSparseWeightConfig, SemiSparseWeightConfig |
| 30 | + |
| 31 | +# Define test configurations as fixtures |
| 32 | +configs = [ |
| 33 | + Float8DynamicActivationFloat8WeightConfig(), |
| 34 | + Float8DynamicActivationFloat8WeightConfig(granularity=PerRow()), |
| 35 | + Float8WeightOnlyConfig( |
| 36 | + weight_dtype=torch.float8_e4m3fn, |
| 37 | + ), |
| 38 | + UIntXWeightOnlyConfig(dtype=torch.uint1), |
| 39 | + Int4DynamicActivationInt4WeightConfig(), |
| 40 | + Int4WeightOnlyConfig( |
| 41 | + group_size=32, |
| 42 | + ), |
| 43 | + Int8DynamicActivationInt4WeightConfig( |
| 44 | + group_size=64, |
| 45 | + ), |
| 46 | + Int8DynamicActivationInt8WeightConfig(), |
| 47 | + # Int8DynamicActivationInt8WeightConfig(layout=SemiSparseLayout()), |
| 48 | + Int8WeightOnlyConfig( |
| 49 | + group_size=128, |
| 50 | + ), |
| 51 | + UIntXWeightOnlyConfig( |
| 52 | + dtype=torch.uint3, |
| 53 | + group_size=32, |
| 54 | + use_hqq=True, |
| 55 | + ), |
| 56 | + GemliteUIntXWeightOnlyConfig( |
| 57 | + group_size=128, # Optional, has default of 64 |
| 58 | + bit_width=8, # Optional, has default of 4 |
| 59 | + packing_bitwidth=8, # Optional, has default of 32 |
| 60 | + contiguous=True, # Optional, has default of None |
| 61 | + ), |
| 62 | + FPXWeightOnlyConfig(ebits=4, mbits=8), |
| 63 | + # Sparsity configs |
| 64 | + SemiSparseWeightConfig(), |
| 65 | + BlockSparseWeightConfig(blocksize=128), |
| 66 | +] |
| 67 | + |
| 68 | + |
| 69 | +# Create ids for better test naming |
| 70 | +def get_config_ids(configs): |
| 71 | + if not isinstance(configs, list): |
| 72 | + configs = [configs] |
| 73 | + return [config.__class__.__name__ for config in configs] |
| 74 | + |
| 75 | + |
| 76 | +@pytest.mark.parametrize("config", configs, ids=get_config_ids) |
| 77 | +def test_reconstructable_dict_file_round_trip(config): |
| 78 | + """Test saving and loading reconstructable dicts to/from JSON files.""" |
| 79 | + # Get a reconstructable dict |
| 80 | + reconstructable = config_to_dict(config) |
| 81 | + |
| 82 | + # Create a temporary file to save the JSON |
| 83 | + with tempfile.NamedTemporaryFile( |
| 84 | + mode="w+", suffix=".json", delete=False |
| 85 | + ) as temp_file: |
| 86 | + # Write the reconstructable dict as JSON |
| 87 | + json.dump(reconstructable, temp_file) |
| 88 | + temp_file_path = temp_file.name |
| 89 | + |
| 90 | + try: |
| 91 | + # Read back the JSON file |
| 92 | + with open(temp_file_path, "r") as file: |
| 93 | + loaded_dict = json.load(file) |
| 94 | + |
| 95 | + # Reconstruct from the loaded dict |
| 96 | + reconstructed = config_from_dict(loaded_dict) |
| 97 | + |
| 98 | + # Check it's the right class |
| 99 | + assert isinstance(reconstructed, config.__class__) |
| 100 | + |
| 101 | + # Verify attributes match |
| 102 | + for attr_name in config.__dict__: |
| 103 | + if not attr_name.startswith("_"): # Skip private attributes |
| 104 | + original_value = getattr(config, attr_name) |
| 105 | + reconstructed_value = getattr(reconstructed, attr_name) |
| 106 | + |
| 107 | + # Special handling for torch dtypes |
| 108 | + if ( |
| 109 | + hasattr(original_value, "__module__") |
| 110 | + and original_value.__module__ == "torch" |
| 111 | + ): |
| 112 | + assert ( |
| 113 | + str(original_value) == str(reconstructed_value) |
| 114 | + ), f"Attribute {attr_name} mismatch after file round trip for {config.__class__.__name__}" |
| 115 | + else: |
| 116 | + assert ( |
| 117 | + original_value == reconstructed_value |
| 118 | + ), f"Attribute {attr_name} mismatch after file round trip for {config.__class__.__name__}" |
| 119 | + |
| 120 | + finally: |
| 121 | + # Clean up the temporary file |
| 122 | + if os.path.exists(temp_file_path): |
| 123 | + os.unlink(temp_file_path) |
| 124 | + |
| 125 | + |
| 126 | +# Define a dummy config in a non-allowed module |
| 127 | +@dataclass |
| 128 | +class DummyNonAllowedConfig(AOBaseConfig): |
| 129 | + VERSION = 2 |
| 130 | + value: int = 42 |
| 131 | + |
| 132 | + |
| 133 | +def test_disallowed_modules(): |
| 134 | + """Test that configs from non-allowed modules are rejected during reconstruction.""" |
| 135 | + # Create a config from a non-allowed module |
| 136 | + dummy_config = DummyNonAllowedConfig() |
| 137 | + reconstructable = config_to_dict(dummy_config) |
| 138 | + |
| 139 | + with pytest.raises( |
| 140 | + ValueError, |
| 141 | + match="Failed to find class DummyNonAllowedConfig in any of the allowed modules", |
| 142 | + ): |
| 143 | + config_from_dict(reconstructable) |
| 144 | + |
| 145 | + # Use mock.patch as a context manager |
| 146 | + with mock.patch("torchao.core.config.ALLOWED_AO_MODULES", {__name__}): |
| 147 | + reconstructed = config_from_dict(reconstructable) |
| 148 | + assert isinstance(reconstructed, DummyNonAllowedConfig) |
| 149 | + assert reconstructed.value == 42 |
| 150 | + assert reconstructed.VERSION == 2 |
| 151 | + |
| 152 | + |
| 153 | +def test_version_mismatch(): |
| 154 | + """Test that version mismatch raises an error during reconstruction.""" |
| 155 | + # Create a config |
| 156 | + dummy_config = DummyNonAllowedConfig() |
| 157 | + reconstructable = config_to_dict(dummy_config) |
| 158 | + |
| 159 | + # Modify the version in the dict to create a mismatch |
| 160 | + reconstructable["_version"] = 1 |
| 161 | + |
| 162 | + # Patch to allow the module but should still fail due to version mismatch |
| 163 | + with mock.patch("torchao.core.config.ALLOWED_AO_MODULES", {__name__}): |
| 164 | + with pytest.raises( |
| 165 | + VersionMismatchError, |
| 166 | + match="Version mismatch for DummyNonAllowedConfig: stored version 1 != current version 2", |
| 167 | + ): |
| 168 | + config_from_dict(reconstructable) |
| 169 | + |
| 170 | + |
| 171 | +if __name__ == "__main__": |
| 172 | + pytest.main([__file__]) |
0 commit comments