Thank you for contributing to Qualcomm AI Engine Direct delegate for ExecuTorch. Reading and following these guidelines will help you quickly get the essentials of annotating an operator in QnnQuantizer
to unblock yourself and land pull requests more efficiently.
Before extending operator for quantization annotation, please make sure the operator builder has been well-implemented (learn more on this tutorial).
In order to conduct PTQ for floating point precision graph, observers are required to be inserted after each graph nodes. The observed numeric range will go through different algorithms and return statistics of scale
, offset
to represent data in fixed point.
Stages could be shown as:
-
Floating point
nn.Module
aftertorch.export.export
flowchart TB input & kernel & bias --> id1(convolution) --> output
-
Inserting observers for inspecting numeric range
flowchart TB input --> id2(input_act_obs) --> id1(convolution) --> id3(output_act_obs) --> output kernel --> id4(weight_obs) --> id1(convolution) bias --> id5(bias_obs) --> id1(convolution)
-
Cascade QDQ pairs after landing encodings
flowchart TB input --> id2(Q_i) --> id3(DQ_i) --> id1(convolution) --> id4(Q_o) --> id5(DQ_o) --> output kernel --> id6(Q_k) --> id7(DQ_k) --> id1(convolution) bias --> id8(Q_b) --> id9(DQ_b) --> id1(convolution)
Qualcomm backend will consume the generated encodings and lower operators with fixed precision. This tutorial will guide you through the details of inserting observer and some useful utilies.
Let's start with hooking callback for designated operator target:
def register_annotator(ops: List[OpOverload]):
def decorator(annotator: Callable):
for op in ops:
OP_ANNOTATOR[op] = annotator
return decorator
The register_annotator
decorator provides a convenient way to attach your own annotation logic, which requires list of operator type as its input argument.
For example, the torch activation functions have copy
, in-place
implementation with small difference appears in naming (an extra _
postfix), which will map to the same Core ATen operators after to_edge
:
@register_annotator([torch.ops.aten.relu.default, torch.ops.aten.relu_.default])
Where torch.ops.aten.relu.default
/ torch.ops.aten.relu_.default
map to copy
/ in-place
version and both will be converted into torch.ops.aten.relu.default
ultimately.
The function signature is defined as follow with two arguments:
def annotate_xxx(node: Node, quantization_config: QuantizationConfig) -> None:
- node: graph node required to be observed
- quantization_config: data structure describing quantization configurations for IO activation / weight / bias
Conv2d accepts up to three input tensors: input activation
, kernel
, bias
. There are constraints imposed by Qualcomm AI Engine Direct Manual.
Take 8-bit fixed point as example:
- weight: must be symmetrically quantized if per-channel observer is applied
- bias: must have
QNN_DATATYPE_SFIXED_POINT_32
and be symmetrically quantized with expected encodingscales = weight.scales * input.scale
,offset = 0
if per-channel observer is applied.
Let's look at the simplified per-channel quantization configuration used in QnnQuantizer
:
def ptq_per_channel_quant_config(
act_dtype=torch.uint8, weight_dtype=torch.int8
) -> QuantizationConfig:
...
act_quantization_spec = QuantizationSpec(
dtype=act_dtype,
quant_min=torch.iinfo(act_dtype).min,
quant_max=torch.iinfo(act_dtype).max,
qscheme=torch.per_tensor_affine,
observer_or_fake_quant_ctr=MinMaxObserver.with_args(**extra_args),
)
weight_quantization_spec = QuantizationSpec(
dtype=torch.int8,
quant_min=torch.iinfo(weight_dtype).min + 1,
quant_max=torch.iinfo(weight_dtype).max,
qscheme=torch.per_channel_symmetric,
ch_axis=0,
observer_or_fake_quant_ctr=PerChannelMinMaxObserver.with_args(**extra_args),
)
bias_quantization_spec = _derived_bias_quant_spec
quantization_config = QuantizationConfig(
input_activation=act_quantization_spec,
output_activation=act_quantization_spec,
weight=weight_quantization_spec,
bias=bias_quantization_spec,
)
return quantization_config
Here we choose torch.uint8
+ MinMaxObserver
for better converage of IO activation and apply rules to weight
w/PerChannelMinMaxObserver
, bias
w/_derived_bias_quant_spec
(a callable method to calculate encoding in desired way) to meet aforementioned constraints. The well-defined quantizaton_config
will then be shipped to callback for annotation.
Now, we can start to fill in the function body:
-
Register annotator
@register_annotator( [ torch.ops.aten.conv2d.default, torch.ops.aten.conv1d.default, torch.ops.aten.conv_transpose2d.input, ] ) def annotate_conv2d(node: Node, quantization_config: QuantizationConfig) -> None:
There are multiple targets expected to meet our annotation criteria, it's encouraged to do so for code reuse.
-
Define map of input quantization spec
if _is_annotated([node]): return input_qspec_map = {} # annotate input activation input_act = node.args[0] input_spec = quantization_config.input_activation input_qspec_map[input_act] = input_spec # annotate kernel kernel = node.args[1] input_qspec_map[kernel] = quantization_config.weight # annotate bias if len(node.args) > 2: bias = node.args[2] input_qspec_map[bias] = quantization_config.bias(node)
We first check if current graph node has been annotated. If not, an
input_qspec_map
dictionary required by PyTorch framework will be declared for providing mapping between graph nodes and their configurations.
The parameters' order could be found here mentioned in ATen Operator Definitions. Since bias node is optional, the implementation will invoke_derived_bias_quant_spec
to calculate the per-channel bias encoding only if it exists. -
Update node's meta with framework compatible data structure
node.meta[QUANT_ANNOTATION_KEY] = QuantizationAnnotation( input_qspec_map=input_qspec_map, output_qspec=quantization_config.output_activation, _annotated=True, )
After done processing
input_qspec_map
, it's required to have it in node's meta with special tag (QUANT_ANNOTATION_KEY
) forconvert_pt2e
to properly insert observers.
For operators without extra parameters to be observed, there are pre-defined annotation method for convenience:
-
Single in single out operators, e.g.:
@register_annotator([torch.ops.aten.relu.default, torch.ops.aten.relu_.default]) def annotate_relu(node: Node, quantization_config: QuantizationConfig) -> None: annotate_single_in_single_out(node, quantization_config)
-
Binary in single out operators, e.g.:
@register_annotator([torch.ops.aten.add, torch.ops.aten.add.Tensor]) def annotate_add(node: Node, quantization_config: QuantizationConfig) -> None: annotate_binary(node, quantization_config)
-
Shared encodings between input / output, e.g.:
# For operators without arithmetical function, IOs are expected to own the same encodings. @register_annotator([torch.ops.aten.transpose.int]) def annotate_transpose(node: Node, quantization_config: QuantizationConfig) -> None: annotate_in_out_obs_sharing_op(node, quantization_config) if not _is_annotated([node]): annotate_single_in_single_out(node, quantization_config)
This annotator only works for single-in-single-out scenario with node's input that has already been annotated. If not, we still need to invoke
annotate_single_in_single_out
again (this path should be less likely).
Please refer to the issue section for more information.
Please refer to the PR section for more information.