|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +import logging |
| 8 | + |
| 9 | +import torch |
| 10 | + |
| 11 | +from model import LlavaModel |
| 12 | + |
| 13 | + |
| 14 | +def main(): |
| 15 | + |
| 16 | + llava_model = LlavaModel() |
| 17 | + llava = llava_model.get_eager_model() |
| 18 | + |
| 19 | + prompt_before_image, resized, prompt_after_image = llava_model.get_example_inputs() |
| 20 | + logging.info(f"Prompt: {llava_model.prompt}") |
| 21 | + preprocessed = llava.image_preprocess(resized) |
| 22 | + with torch.inference_mode(): |
| 23 | + output_ids = llava_model.model.generate( |
| 24 | + llava_model.input_ids, |
| 25 | + images=preprocessed, |
| 26 | + image_sizes=[preprocessed.size], |
| 27 | + do_sample=False, |
| 28 | + num_beams=1, |
| 29 | + max_new_tokens=10, |
| 30 | + use_cache=True, |
| 31 | + ) |
| 32 | + |
| 33 | + outputs = llava_model.tokenizer.batch_decode(output_ids, skip_special_tokens=True)[ |
| 34 | + 0 |
| 35 | + ].strip() |
| 36 | + logging.info(f"Reference output: {outputs}") |
| 37 | + |
| 38 | + # comparing with llava result |
| 39 | + # prefill_logits = llava.prefill(prompt_before_image, resized, prompt_after_image) |
| 40 | + # prefill_logits_ref = llava.prefill_ref(*inputs)[0] |
| 41 | + # print(f"Prefill logits all close? {torch.allclose(prefill_logits, prefill_logits_ref, atol=1e-3)}") |
| 42 | + |
| 43 | + # prefill_logits = llava.prefill(*inputs) |
| 44 | + # context_len = prefill_logits.shape[1] |
| 45 | + # print(prefill_logits) |
| 46 | + # # first token |
| 47 | + # new_tokens = [torch.argmax(prefill_logits[..., -1, :]).item()] |
| 48 | + # # print(tokenizer.decode(new_tokens)) |
| 49 | + # for i in range(llava_model.args.max_new_tokens): |
| 50 | + # print(i, llava_model.tokenizer.decode(new_tokens[i])) |
| 51 | + # logits = llava.forward( |
| 52 | + # torch.tensor([new_tokens[i]]), torch.tensor([context_len + i]) |
| 53 | + # ) |
| 54 | + # new_tokens.append(torch.argmax(logits[-1, :])) |
| 55 | + prefill_logits = llava.prefill(prompt_before_image, resized, prompt_after_image) |
| 56 | + context_len = prefill_logits.shape[1] |
| 57 | + logging.info(prefill_logits) |
| 58 | + new_tokens = [torch.argmax(prefill_logits[..., -1, :]).item()] |
| 59 | + i = 0 |
| 60 | + logging.info(i, llava_model.tokenizer.decode(new_tokens[i])) |
| 61 | + logits = llava.step(torch.tensor([new_tokens[i]]), torch.tensor([context_len + i])) |
| 62 | + logging.info(logits) |
| 63 | + |
| 64 | + |
| 65 | +if __name__ == "__main__": |
| 66 | + main() |
0 commit comments