|
14 | 14 | *
|
15 | 15 | */
|
16 | 16 |
|
17 |
| -#include <executorch/backends/qualcomm/runtime/QnnExecuTorch.h> |
18 |
| -#include <executorch/examples/qualcomm/oss_scripts/llama/runner/runner.h> |
19 |
| -#include <executorch/runtime/platform/log.h> |
20 |
| -#include <gflags/gflags.h> |
21 |
| -#include <fstream> |
22 |
| -#include <vector> |
23 |
| - |
24 |
| -DEFINE_string( |
25 |
| - model_path, |
26 |
| - "kv_llama_qnn.pte", |
27 |
| - "Model serialized in flatbuffer format."); |
28 |
| -DEFINE_string( |
29 |
| - output_path, |
30 |
| - "outputs.txt", |
31 |
| - "Executorch inference data output path."); |
32 |
| -DEFINE_string( |
33 |
| - performance_output_path, |
34 |
| - "inference_speed.txt", |
35 |
| - "Records inference speed. For CI purpose."); |
36 |
| -DEFINE_string(tokenizer_path, "tokenizer.bin", "Tokenizer stuff."); |
37 |
| -DEFINE_string(prompt, "The answer to the ultimate question is", "Prompt."); |
38 |
| -DEFINE_string( |
39 |
| - system_prompt, |
40 |
| - "", |
41 |
| - "Tells the model what kind of assistant it should be. For example, You are a helpful AI assistant for travel tips and recommendations. Default is None"); |
42 |
| -DEFINE_double( |
43 |
| - temperature, |
44 |
| - 0.0f, |
45 |
| - "Temperature; Default is 0.0f. 0 = greedy argmax sampling (deterministic). Lower temperature = more deterministic"); |
46 |
| -DEFINE_int32( |
47 |
| - seq_len, |
48 |
| - 128, |
49 |
| - "Total number of tokens to generate (prompt + output)."); |
50 |
| -DEFINE_int32( |
51 |
| - eval_mode, |
52 |
| - 1, |
53 |
| - "0: TokenGenerator(kv) / 1: HybridMode (prefill+kv)"); |
54 |
| -DEFINE_double(logits_scale, 0.0, "Logits scale"); |
55 |
| -DEFINE_int32(logits_offset, 0, "Logits offset"); |
56 |
| -DEFINE_string( |
57 |
| - kv_updater, |
58 |
| - "How to update kv cache. Choose between SmartMask and ShiftPointer", |
59 |
| - "SmartMask"); |
60 |
| -DEFINE_int32(num_iters, 1, "total num of iterations to run."); |
61 |
| - |
62 |
| -int main(int argc, char** argv) { |
63 |
| - gflags::ParseCommandLineFlags(&argc, &argv, true); |
64 |
| - |
65 |
| - // create llama runner |
66 |
| - example::Runner runner( |
67 |
| - {FLAGS_model_path}, |
68 |
| - FLAGS_tokenizer_path.c_str(), |
69 |
| - FLAGS_performance_output_path.c_str(), |
70 |
| - FLAGS_logits_scale, |
71 |
| - FLAGS_logits_offset, |
72 |
| - FLAGS_temperature, |
73 |
| - FLAGS_eval_mode, |
74 |
| - FLAGS_kv_updater, |
75 |
| - FLAGS_num_iters); |
76 |
| - std::vector<char> buf; |
77 |
| - buf.reserve(5 * FLAGS_seq_len); // assume each token is around 5 char |
78 |
| - std::ofstream fout(FLAGS_output_path.c_str()); |
79 |
| - auto callback = [&](const std::string& piece) { |
80 |
| - for (const char c : piece) { |
81 |
| - buf.push_back(c); |
82 |
| - } |
83 |
| - }; |
84 |
| - // generate tokens & store inference output |
85 |
| - for (int i = 0; i < FLAGS_num_iters; i++) { |
86 |
| - runner.generate( |
87 |
| - FLAGS_seq_len, |
88 |
| - FLAGS_prompt.c_str(), |
89 |
| - FLAGS_system_prompt.c_str(), |
90 |
| - callback); |
91 |
| - } |
92 |
| - fout.write(buf.data(), buf.size()); |
93 |
| - fout.close(); |
94 |
| - return 0; |
95 |
| -} |
| 17 | + #include <executorch/backends/qualcomm/runtime/QnnExecuTorch.h> |
| 18 | + #include <executorch/examples/qualcomm/oss_scripts/llama/runner/runner.h> |
| 19 | + #include <executorch/runtime/platform/log.h> |
| 20 | + #include <gflags/gflags.h> |
| 21 | + #include <fstream> |
| 22 | + #include <vector> |
| 23 | + |
| 24 | + DEFINE_string( |
| 25 | + model_path, |
| 26 | + "kv_llama_qnn.pte", |
| 27 | + "Model serialized in flatbuffer format."); |
| 28 | + DEFINE_string( |
| 29 | + output_path, |
| 30 | + "outputs.txt", |
| 31 | + "Executorch inference data output path."); |
| 32 | + DEFINE_string( |
| 33 | + performance_output_path, |
| 34 | + "inference_speed.txt", |
| 35 | + "Records inference speed. For CI purpose."); |
| 36 | + DEFINE_string(tokenizer_path, "tokenizer.bin", "Tokenizer stuff."); |
| 37 | + DEFINE_string(prompt, "The answer to the ultimate question is", "Prompt."); |
| 38 | + DEFINE_string( |
| 39 | + system_prompt, |
| 40 | + "", |
| 41 | + "Tells the model what kind of assistant it should be. For example, You are a helpful AI assistant for travel tips and recommendations. Default is None"); |
| 42 | + DEFINE_double( |
| 43 | + temperature, |
| 44 | + 0.0f, |
| 45 | + "Temperature; Default is 0.0f. 0 = greedy argmax sampling (deterministic). Lower temperature = more deterministic"); |
| 46 | + DEFINE_int32( |
| 47 | + seq_len, |
| 48 | + 128, |
| 49 | + "Total number of tokens to generate (prompt + output)."); |
| 50 | + DEFINE_int32( |
| 51 | + eval_mode, |
| 52 | + 1, |
| 53 | + "0: TokenGenerator(kv) / 1: HybridMode (prefill+kv)"); |
| 54 | + DEFINE_double(logits_scale, 0.0, "Logits scale"); |
| 55 | + DEFINE_int32(logits_offset, 0, "Logits offset"); |
| 56 | + DEFINE_string( |
| 57 | + kv_updater, |
| 58 | + "How to update kv cache. Choose between SmartMask and ShiftPointer", |
| 59 | + "SmartMask"); |
| 60 | + DEFINE_int32(num_iters, 1, "total num of iterations to run."); |
| 61 | + |
| 62 | + std::vector<std::string> CollectPrompts(int argc, char** argv) { |
| 63 | + // Collect all prompts from command line, example usage: |
| 64 | + // --prompt "prompt1" --prompt "prompt2" --prompt "prompt3" |
| 65 | + std::vector<std::string> prompts; |
| 66 | + for (int i = 1; i < argc; i++) { |
| 67 | + if (std::string(argv[i]) == "--prompt" && i + 1 < argc) { |
| 68 | + prompts.push_back(argv[i + 1]); |
| 69 | + i++; // Skip the next argument |
| 70 | + } |
| 71 | + } |
| 72 | + return prompts; |
| 73 | + } |
| 74 | + |
| 75 | + int main(int argc, char** argv) { |
| 76 | + std::vector<std::string> prompts = CollectPrompts(argc, argv); |
| 77 | + gflags::ParseCommandLineFlags(&argc, &argv, true); |
| 78 | + // create llama runner |
| 79 | + example::Runner runner( |
| 80 | + {FLAGS_model_path}, |
| 81 | + FLAGS_tokenizer_path.c_str(), |
| 82 | + FLAGS_performance_output_path.c_str(), |
| 83 | + FLAGS_logits_scale, |
| 84 | + FLAGS_logits_offset, |
| 85 | + FLAGS_temperature, |
| 86 | + FLAGS_eval_mode, |
| 87 | + FLAGS_kv_updater, |
| 88 | + FLAGS_num_iters); |
| 89 | + std::vector<char> buf; |
| 90 | + buf.reserve(5 * FLAGS_seq_len); // assume each token is around 5 char |
| 91 | + std::ofstream fout(FLAGS_output_path.c_str()); |
| 92 | + auto callback = [&](const std::string& piece) { |
| 93 | + for (const char c : piece) { |
| 94 | + buf.push_back(c); |
| 95 | + } |
| 96 | + }; |
| 97 | + // generate tokens & store inference output |
| 98 | + for (int i = 0; i < FLAGS_num_iters; i++) { |
| 99 | + for (const auto& prompt : prompts) { |
| 100 | + runner.generate( |
| 101 | + FLAGS_seq_len, prompt.c_str(), FLAGS_system_prompt.c_str(), callback); |
| 102 | + } |
| 103 | + } |
| 104 | + fout.write(buf.data(), buf.size()); |
| 105 | + fout.close(); |
| 106 | + return 0; |
| 107 | + } |
0 commit comments