|
14 | 14 | * |
15 | 15 | */ |
16 | 16 |
|
17 | | -#include <executorch/backends/qualcomm/runtime/QnnExecuTorch.h> |
18 | | -#include <executorch/examples/qualcomm/oss_scripts/llama/runner/runner.h> |
19 | | -#include <executorch/runtime/platform/log.h> |
20 | | -#include <gflags/gflags.h> |
21 | | -#include <fstream> |
22 | | -#include <vector> |
23 | | - |
24 | | -DEFINE_string( |
25 | | - model_path, |
26 | | - "kv_llama_qnn.pte", |
27 | | - "Model serialized in flatbuffer format."); |
28 | | -DEFINE_string( |
29 | | - output_path, |
30 | | - "outputs.txt", |
31 | | - "Executorch inference data output path."); |
32 | | -DEFINE_string( |
33 | | - performance_output_path, |
34 | | - "inference_speed.txt", |
35 | | - "Records inference speed. For CI purpose."); |
36 | | -DEFINE_string(tokenizer_path, "tokenizer.bin", "Tokenizer stuff."); |
37 | | -DEFINE_string(prompt, "The answer to the ultimate question is", "Prompt."); |
38 | | -DEFINE_string( |
39 | | - system_prompt, |
40 | | - "", |
41 | | - "Tells the model what kind of assistant it should be. For example, You are a helpful AI assistant for travel tips and recommendations. Default is None"); |
42 | | -DEFINE_double( |
43 | | - temperature, |
44 | | - 0.0f, |
45 | | - "Temperature; Default is 0.0f. 0 = greedy argmax sampling (deterministic). Lower temperature = more deterministic"); |
46 | | -DEFINE_int32( |
47 | | - seq_len, |
48 | | - 128, |
49 | | - "Total number of tokens to generate (prompt + output)."); |
50 | | -DEFINE_int32( |
51 | | - eval_mode, |
52 | | - 1, |
53 | | - "0: TokenGenerator(kv) / 1: HybridMode (prefill+kv)"); |
54 | | -DEFINE_double(logits_scale, 0.0, "Logits scale"); |
55 | | -DEFINE_int32(logits_offset, 0, "Logits offset"); |
56 | | -DEFINE_string( |
57 | | - kv_updater, |
58 | | - "How to update kv cache. Choose between SmartMask and ShiftPointer", |
59 | | - "SmartMask"); |
60 | | -DEFINE_int32(num_iters, 1, "total num of iterations to run."); |
61 | | - |
62 | | -int main(int argc, char** argv) { |
63 | | - gflags::ParseCommandLineFlags(&argc, &argv, true); |
64 | | - |
65 | | - // create llama runner |
66 | | - example::Runner runner( |
67 | | - {FLAGS_model_path}, |
68 | | - FLAGS_tokenizer_path.c_str(), |
69 | | - FLAGS_performance_output_path.c_str(), |
70 | | - FLAGS_logits_scale, |
71 | | - FLAGS_logits_offset, |
72 | | - FLAGS_temperature, |
73 | | - FLAGS_eval_mode, |
74 | | - FLAGS_kv_updater, |
75 | | - FLAGS_num_iters); |
76 | | - std::vector<char> buf; |
77 | | - buf.reserve(5 * FLAGS_seq_len); // assume each token is around 5 char |
78 | | - std::ofstream fout(FLAGS_output_path.c_str()); |
79 | | - auto callback = [&](const std::string& piece) { |
80 | | - for (const char c : piece) { |
81 | | - buf.push_back(c); |
82 | | - } |
83 | | - }; |
84 | | - // generate tokens & store inference output |
85 | | - for (int i = 0; i < FLAGS_num_iters; i++) { |
86 | | - runner.generate( |
87 | | - FLAGS_seq_len, |
88 | | - FLAGS_prompt.c_str(), |
89 | | - FLAGS_system_prompt.c_str(), |
90 | | - callback); |
91 | | - } |
92 | | - fout.write(buf.data(), buf.size()); |
93 | | - fout.close(); |
94 | | - return 0; |
95 | | -} |
| 17 | + #include <executorch/backends/qualcomm/runtime/QnnExecuTorch.h> |
| 18 | + #include <executorch/examples/qualcomm/oss_scripts/llama/runner/runner.h> |
| 19 | + #include <executorch/runtime/platform/log.h> |
| 20 | + #include <gflags/gflags.h> |
| 21 | + #include <fstream> |
| 22 | + #include <vector> |
| 23 | + |
| 24 | + DEFINE_string( |
| 25 | + model_path, |
| 26 | + "kv_llama_qnn.pte", |
| 27 | + "Model serialized in flatbuffer format."); |
| 28 | + DEFINE_string( |
| 29 | + output_path, |
| 30 | + "outputs.txt", |
| 31 | + "Executorch inference data output path."); |
| 32 | + DEFINE_string( |
| 33 | + performance_output_path, |
| 34 | + "inference_speed.txt", |
| 35 | + "Records inference speed. For CI purpose."); |
| 36 | + DEFINE_string(tokenizer_path, "tokenizer.bin", "Tokenizer stuff."); |
| 37 | + DEFINE_string(prompt, "The answer to the ultimate question is", "Prompt."); |
| 38 | + DEFINE_string( |
| 39 | + system_prompt, |
| 40 | + "", |
| 41 | + "Tells the model what kind of assistant it should be. For example, You are a helpful AI assistant for travel tips and recommendations. Default is None"); |
| 42 | + DEFINE_double( |
| 43 | + temperature, |
| 44 | + 0.0f, |
| 45 | + "Temperature; Default is 0.0f. 0 = greedy argmax sampling (deterministic). Lower temperature = more deterministic"); |
| 46 | + DEFINE_int32( |
| 47 | + seq_len, |
| 48 | + 128, |
| 49 | + "Total number of tokens to generate (prompt + output)."); |
| 50 | + DEFINE_int32( |
| 51 | + eval_mode, |
| 52 | + 1, |
| 53 | + "0: TokenGenerator(kv) / 1: HybridMode (prefill+kv)"); |
| 54 | + DEFINE_double(logits_scale, 0.0, "Logits scale"); |
| 55 | + DEFINE_int32(logits_offset, 0, "Logits offset"); |
| 56 | + DEFINE_string( |
| 57 | + kv_updater, |
| 58 | + "How to update kv cache. Choose between SmartMask and ShiftPointer", |
| 59 | + "SmartMask"); |
| 60 | + DEFINE_int32(num_iters, 1, "total num of iterations to run."); |
| 61 | + |
| 62 | + std::vector<std::string> CollectPrompts(int argc, char** argv) { |
| 63 | + // Collect all prompts from command line, example usage: |
| 64 | + // --prompt "prompt1" --prompt "prompt2" --prompt "prompt3" |
| 65 | + std::vector<std::string> prompts; |
| 66 | + for (int i = 1; i < argc; i++) { |
| 67 | + if (std::string(argv[i]) == "--prompt" && i + 1 < argc) { |
| 68 | + prompts.push_back(argv[i + 1]); |
| 69 | + i++; // Skip the next argument |
| 70 | + } |
| 71 | + } |
| 72 | + return prompts; |
| 73 | + } |
| 74 | + |
| 75 | + int main(int argc, char** argv) { |
| 76 | + std::vector<std::string> prompts = CollectPrompts(argc, argv); |
| 77 | + gflags::ParseCommandLineFlags(&argc, &argv, true); |
| 78 | + // create llama runner |
| 79 | + example::Runner runner( |
| 80 | + {FLAGS_model_path}, |
| 81 | + FLAGS_tokenizer_path.c_str(), |
| 82 | + FLAGS_performance_output_path.c_str(), |
| 83 | + FLAGS_logits_scale, |
| 84 | + FLAGS_logits_offset, |
| 85 | + FLAGS_temperature, |
| 86 | + FLAGS_eval_mode, |
| 87 | + FLAGS_kv_updater, |
| 88 | + FLAGS_num_iters); |
| 89 | + std::vector<char> buf; |
| 90 | + buf.reserve(5 * FLAGS_seq_len); // assume each token is around 5 char |
| 91 | + std::ofstream fout(FLAGS_output_path.c_str()); |
| 92 | + auto callback = [&](const std::string& piece) { |
| 93 | + for (const char c : piece) { |
| 94 | + buf.push_back(c); |
| 95 | + } |
| 96 | + }; |
| 97 | + // generate tokens & store inference output |
| 98 | + for (int i = 0; i < FLAGS_num_iters; i++) { |
| 99 | + for (const auto& prompt : prompts) { |
| 100 | + runner.generate( |
| 101 | + FLAGS_seq_len, prompt.c_str(), FLAGS_system_prompt.c_str(), callback); |
| 102 | + } |
| 103 | + } |
| 104 | + fout.write(buf.data(), buf.size()); |
| 105 | + fout.close(); |
| 106 | + return 0; |
| 107 | + } |
0 commit comments