|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +import argparse |
| 8 | +import json |
| 9 | +from typing import Any, Callable, Dict, List, Optional, Tuple |
| 10 | + |
| 11 | +import torch |
| 12 | + |
| 13 | +from executorch.exir import ExportedProgram |
| 14 | +from executorch.exir.backend.backend_api import LoweredBackendModule |
| 15 | +from executorch.sdk.etrecord import parse_etrecord |
| 16 | +from executorch.sdk.etrecord._etrecord import ETRecordReservedFileNames |
| 17 | + |
| 18 | + |
| 19 | +def _get_tensor_data(node: torch.fx.Node, tensor: torch.Tensor) -> Dict[str, Any]: |
| 20 | + return { |
| 21 | + "name": node.name, |
| 22 | + "numel": tensor.numel(), |
| 23 | + "dtype": str(tensor.dtype)[6:], # Remove "torch." prefix |
| 24 | + "element_size": tensor.element_size(), |
| 25 | + "shape": list(tensor.shape), |
| 26 | + "num_bytes": tensor.element_size() * tensor.numel(), |
| 27 | + "nn_module_stack": ( |
| 28 | + str(node.meta["nn_module_stack"]) |
| 29 | + if "nn_module_stack" in node.meta |
| 30 | + else None |
| 31 | + ), |
| 32 | + } |
| 33 | + |
| 34 | + |
| 35 | +def _get_delegate_blob_data( |
| 36 | + node: torch.fx.Node, |
| 37 | + lowered_backend_module: LoweredBackendModule, |
| 38 | + delegate_deserializers: Optional[ |
| 39 | + Dict[str, Callable[[bytes], Dict[str, Any]]] |
| 40 | + ] = None, |
| 41 | +) -> Dict[str, Any]: |
| 42 | + delegate_blob_data = { |
| 43 | + "name": node.name, |
| 44 | + "backend_id": lowered_backend_module.backend_id, |
| 45 | + "num_bytes": len(lowered_backend_module.processed_bytes), |
| 46 | + } |
| 47 | + if ( |
| 48 | + delegate_deserializers is not None |
| 49 | + and lowered_backend_module.backend_id in delegate_deserializers |
| 50 | + ): |
| 51 | + delegate_blob_data.update( |
| 52 | + delegate_deserializers[lowered_backend_module.backend_id]( |
| 53 | + lowered_backend_module.processed_bytes |
| 54 | + ) |
| 55 | + ) |
| 56 | + |
| 57 | + return delegate_blob_data |
| 58 | + |
| 59 | + |
| 60 | +def _get_nested_model_data( |
| 61 | + graph_module: torch.fx.GraphModule, |
| 62 | + delegate_deserializers: Optional[ |
| 63 | + Dict[str, Callable[[bytes], Dict[str, Any]]] |
| 64 | + ] = None, |
| 65 | + tensor_data: Optional[List[Dict[str, Any]]] = None, |
| 66 | + delegate_blob_data: Optional[List[Dict[str, Any]]] = None, |
| 67 | +) -> Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]: |
| 68 | + if tensor_data is None: |
| 69 | + tensor_data = [] |
| 70 | + |
| 71 | + if delegate_blob_data is None: |
| 72 | + delegate_blob_data = [] |
| 73 | + |
| 74 | + for node in graph_module.graph.nodes: |
| 75 | + if node.op == "get_attr": |
| 76 | + node_attr = getattr(node.graph.owning_module, node.target) |
| 77 | + if isinstance(node_attr, torch.Tensor): |
| 78 | + tensor_data.append(_get_tensor_data(node, node_attr)) |
| 79 | + elif isinstance(node_attr, torch.fx.GraphModule): |
| 80 | + _get_nested_model_data( |
| 81 | + node_attr, delegate_deserializers, tensor_data, delegate_blob_data |
| 82 | + ) |
| 83 | + elif isinstance(node_attr, LoweredBackendModule): |
| 84 | + delegate_blob_data.append( |
| 85 | + _get_delegate_blob_data(node, node_attr, delegate_deserializers) |
| 86 | + ) |
| 87 | + |
| 88 | + return (tensor_data, delegate_blob_data) |
| 89 | + |
| 90 | + |
| 91 | +def generate_model_size_information( |
| 92 | + model: ExportedProgram, |
| 93 | + delegate_deserializers: Optional[ |
| 94 | + Dict[str, Callable[[bytes], Dict[str, Any]]] |
| 95 | + ] = None, |
| 96 | + flatbuffer: Optional[bytes] = None, |
| 97 | +) -> Dict[str, Any]: |
| 98 | + """ |
| 99 | + Generate a json-serializable Dict containing information about a model's |
| 100 | + size. This includes data about individual tensors and delegate blobs. |
| 101 | + Optionally: |
| 102 | + - delegate_deserializers can be provided to manually specify additional |
| 103 | + information to include for delegate blobs for specific backends. |
| 104 | + - flatbuffer can be provided to include a comparison of total tensor data |
| 105 | + size to overall model size |
| 106 | + """ |
| 107 | + |
| 108 | + tensor_and_delegate_blob_data = _get_nested_model_data( |
| 109 | + model.graph_module, delegate_deserializers |
| 110 | + ) |
| 111 | + |
| 112 | + for data_list in tensor_and_delegate_blob_data: |
| 113 | + data_list.sort(key=lambda data: data["num_bytes"], reverse=True) |
| 114 | + |
| 115 | + (tensor_data, delegate_blob_data) = tensor_and_delegate_blob_data |
| 116 | + |
| 117 | + total_tensor_data_size = sum(data["num_bytes"] for data in tensor_data) |
| 118 | + total_delegate_blob_data_size = sum( |
| 119 | + data["num_bytes"] for data in delegate_blob_data |
| 120 | + ) |
| 121 | + overview = { |
| 122 | + "total_tensor_data_size": total_tensor_data_size, |
| 123 | + "total_delegate_blob_data_size": total_delegate_blob_data_size, |
| 124 | + } |
| 125 | + if flatbuffer is not None: |
| 126 | + model_size = len(flatbuffer) |
| 127 | + overview.update( |
| 128 | + { |
| 129 | + "serialization_metadata_size": ( |
| 130 | + model_size - total_tensor_data_size - total_delegate_blob_data_size |
| 131 | + ), |
| 132 | + "model_size": model_size, |
| 133 | + } |
| 134 | + ) |
| 135 | + |
| 136 | + return { |
| 137 | + "tensor_data": tensor_data, |
| 138 | + "delegate_blob_data": delegate_blob_data, |
| 139 | + "overview": overview, |
| 140 | + } |
| 141 | + |
| 142 | + |
| 143 | +def parse_args(): |
| 144 | + parser = argparse.ArgumentParser() |
| 145 | + |
| 146 | + parser.add_argument( |
| 147 | + "--etrecord_path", |
| 148 | + required=True, |
| 149 | + help="The path to the ETRecord for the model to generate size information for", |
| 150 | + ) |
| 151 | + |
| 152 | + parser.add_argument( |
| 153 | + "--output_path", |
| 154 | + default="model_size_information.json", |
| 155 | + help="The output path for the model size information as a json file", |
| 156 | + ) |
| 157 | + |
| 158 | + args = parser.parse_args() |
| 159 | + return args |
| 160 | + |
| 161 | + |
| 162 | +def main(): |
| 163 | + args = parse_args() |
| 164 | + |
| 165 | + etrecord = parse_etrecord(args.etrecord_path) |
| 166 | + |
| 167 | + all_model_size_information = [ |
| 168 | + generate_model_size_information( |
| 169 | + model=exported_program, |
| 170 | + delegate_deserializers=None, |
| 171 | + flatbuffer=( |
| 172 | + etrecord.program_buffer |
| 173 | + if name == ETRecordReservedFileNames.ET_DIALECT_GRAPH_MODULE |
| 174 | + else None |
| 175 | + ), |
| 176 | + ) |
| 177 | + for (name, exported_program) in etrecord.graph_map.items() |
| 178 | + ] |
| 179 | + |
| 180 | + with open(args.output_path, "w") as f: |
| 181 | + f.write(json.dumps(all_model_size_information)) |
| 182 | + |
| 183 | + |
| 184 | +if __name__ == "__main__": |
| 185 | + main() |
0 commit comments