diff --git a/util/collect_env.py b/util/collect_env.py new file mode 100644 index 00000000000..7d35c0636ce --- /dev/null +++ b/util/collect_env.py @@ -0,0 +1,749 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the BSD-style license found in the +# LICENSE file in the root directory of this source tree. + +# mypy: allow-untyped-defs + +# Unlike the rest of the PyTorch this file must be python2 compliant. +# This script outputs relevant system environment info +# Run it with `python util/collect_env.py` or `python -m util.collect_env` + +import datetime +import json +import locale +import os +import re +import subprocess +import sys +from collections import namedtuple + + +try: + import torch + + TORCH_AVAILABLE = True +except (ImportError, NameError, AttributeError, OSError): + TORCH_AVAILABLE = False + +# System Environment Information +SystemEnv = namedtuple( + "SystemEnv", + [ + "torch_version", + "is_debug_build", + "cuda_compiled_version", + "gcc_version", + "clang_version", + "cmake_version", + "os", + "libc_version", + "python_version", + "python_platform", + "is_cuda_available", + "cuda_runtime_version", + "cuda_module_loading", + "nvidia_driver_version", + "nvidia_gpu_models", + "cudnn_version", + "pip_version", # 'pip' or 'pip3' + "pip_packages", + "conda_packages", + "hip_compiled_version", + "hip_runtime_version", + "miopen_runtime_version", + "caching_allocator_config", + "is_xnnpack_available", + "cpu_info", + ], +) + +COMMON_PATTERNS = [ + "torch", + "numpy", + "triton", + "optree", +] + +NVIDIA_PATTERNS = [ + "cuda-cudart", + "cuda-cupti", + "cuda-libraries", + "cuda-opencl", + "cuda-nvrtc", + "cuda-runtime", + "cublas", + "cudnn", + "cufft", + "curand", + "cusolver", + "cusparse", + "nccl", + "nvjitlink", + "nvtx", +] + +CONDA_PATTERNS = [ + "cudatoolkit", + "soumith", + "mkl", + "magma", +] + +PIP_PATTERNS = [ + "mypy", + "flake8", + "onnx", +] + + +def run(command): + """Return (return-code, stdout, stderr).""" + shell = True if type(command) is str else False + p = subprocess.Popen( + command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=shell + ) + raw_output, raw_err = p.communicate() + rc = p.returncode + if get_platform() == "win32": + enc = "oem" + else: + enc = locale.getpreferredencoding() + output = raw_output.decode(enc) + err = raw_err.decode(enc) + return rc, output.strip(), err.strip() + + +def run_and_read_all(run_lambda, command): + """Run command using run_lambda; reads and returns entire output if rc is 0.""" + rc, out, _ = run_lambda(command) + if rc != 0: + return None + return out + + +def run_and_parse_first_match(run_lambda, command, regex): + """Run command using run_lambda, returns the first regex match if it exists.""" + rc, out, _ = run_lambda(command) + if rc != 0: + return None + match = re.search(regex, out) + if match is None: + return None + return match.group(1) + + +def run_and_return_first_line(run_lambda, command): + """Run command using run_lambda and returns first line if output is not empty.""" + rc, out, _ = run_lambda(command) + if rc != 0: + return None + return out.split("\n")[0] + + +def get_conda_packages(run_lambda, patterns=None): + if patterns is None: + patterns = CONDA_PATTERNS + COMMON_PATTERNS + NVIDIA_PATTERNS + conda = os.environ.get("CONDA_EXE", "conda") + out = run_and_read_all(run_lambda, "{} list".format(conda)) + if out is None: + return out + + return "\n".join( + line + for line in out.splitlines() + if not line.startswith("#") and any(name in line for name in patterns) + ) + + +def get_gcc_version(run_lambda): + return run_and_parse_first_match(run_lambda, "gcc --version", r"gcc (.*)") + + +def get_clang_version(run_lambda): + return run_and_parse_first_match( + run_lambda, "clang --version", r"clang version (.*)" + ) + + +def get_cmake_version(run_lambda): + return run_and_parse_first_match(run_lambda, "cmake --version", r"cmake (.*)") + + +def get_nvidia_driver_version(run_lambda): + if get_platform() == "darwin": + cmd = "kextstat | grep -i cuda" + return run_and_parse_first_match( + run_lambda, cmd, r"com[.]nvidia[.]CUDA [(](.*?)[)]" + ) + smi = get_nvidia_smi() + return run_and_parse_first_match(run_lambda, smi, r"Driver Version: (.*?) ") + + +def get_gpu_info(run_lambda): + if get_platform() == "darwin" or ( + TORCH_AVAILABLE + and hasattr(torch.version, "hip") + and torch.version.hip is not None + ): + if TORCH_AVAILABLE and torch.cuda.is_available(): + if torch.version.hip is not None: + prop = torch.cuda.get_device_properties(0) + if hasattr(prop, "gcnArchName"): + gcnArch = " ({})".format(prop.gcnArchName) + else: + gcnArch = "NoGCNArchNameOnOldPyTorch" + else: + gcnArch = "" + return torch.cuda.get_device_name(None) + gcnArch + return None + smi = get_nvidia_smi() + uuid_regex = re.compile(r" \(UUID: .+?\)") + rc, out, _ = run_lambda(smi + " -L") + if rc != 0: + return None + # Anonymize GPUs by removing their UUID + return re.sub(uuid_regex, "", out) + + +def get_running_cuda_version(run_lambda): + return run_and_parse_first_match(run_lambda, "nvcc --version", r"release .+ V(.*)") + + +def get_cudnn_version(run_lambda): + """Return a list of libcudnn.so; it's hard to tell which one is being used.""" + if get_platform() == "win32": + system_root = os.environ.get("SYSTEMROOT", "C:\\Windows") + cuda_path = os.environ.get("CUDA_PATH", "%CUDA_PATH%") + where_cmd = os.path.join(system_root, "System32", "where") + cudnn_cmd = '{} /R "{}\\bin" cudnn*.dll'.format(where_cmd, cuda_path) + elif get_platform() == "darwin": + # CUDA libraries and drivers can be found in /usr/local/cuda/. See + # https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install + # https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac + # Use CUDNN_LIBRARY when cudnn library is installed elsewhere. + cudnn_cmd = "ls /usr/local/cuda/lib/libcudnn*" + else: + cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev' + rc, out, _ = run_lambda(cudnn_cmd) + # find will return 1 if there are permission errors or if not found + if len(out) == 0 or (rc != 1 and rc != 0): + cudnn_lib = os.environ.get("CUDNN_LIBRARY") + if cudnn_lib is not None and os.path.isfile(cudnn_lib): + return os.path.realpath(cudnn_lib) + return None + files_set = set() + for fn in out.split("\n"): + fn = os.path.realpath(fn) # eliminate symbolic links + if os.path.isfile(fn): + files_set.add(fn) + if not files_set: + return None + # Alphabetize the result because the order is non-deterministic otherwise + files = sorted(files_set) + if len(files) == 1: + return files[0] + result = "\n".join(files) + return "Probably one of the following:\n{}".format(result) + + +def get_nvidia_smi(): + # Note: nvidia-smi is currently available only on Windows and Linux + smi = "nvidia-smi" + if get_platform() == "win32": + system_root = os.environ.get("SYSTEMROOT", "C:\\Windows") + program_files_root = os.environ.get("PROGRAMFILES", "C:\\Program Files") + legacy_path = os.path.join( + program_files_root, "NVIDIA Corporation", "NVSMI", smi + ) + new_path = os.path.join(system_root, "System32", smi) + smis = [new_path, legacy_path] + for candidate_smi in smis: + if os.path.exists(candidate_smi): + smi = '"{}"'.format(candidate_smi) + break + return smi + + +# example outputs of CPU infos +# * linux +# Architecture: x86_64 +# CPU op-mode(s): 32-bit, 64-bit +# Address sizes: 46 bits physical, 48 bits virtual +# Byte Order: Little Endian +# CPU(s): 128 +# On-line CPU(s) list: 0-127 +# Vendor ID: GenuineIntel +# Model name: Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz +# CPU family: 6 +# Model: 106 +# Thread(s) per core: 2 +# Core(s) per socket: 32 +# Socket(s): 2 +# Stepping: 6 +# BogoMIPS: 5799.78 +# Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr +# sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl +# xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 +# pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand +# hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced +# fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap +# avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 +# xsaves wbnoinvd ida arat avx512vbmi pku ospke avx512_vbmi2 gfni vaes vpclmulqdq +# avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear flush_l1d arch_capabilities +# Virtualization features: +# Hypervisor vendor: KVM +# Virtualization type: full +# Caches (sum of all): +# L1d: 3 MiB (64 instances) +# L1i: 2 MiB (64 instances) +# L2: 80 MiB (64 instances) +# L3: 108 MiB (2 instances) +# NUMA: +# NUMA node(s): 2 +# NUMA node0 CPU(s): 0-31,64-95 +# NUMA node1 CPU(s): 32-63,96-127 +# Vulnerabilities: +# Itlb multihit: Not affected +# L1tf: Not affected +# Mds: Not affected +# Meltdown: Not affected +# Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown +# Retbleed: Not affected +# Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp +# Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization +# Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence +# Srbds: Not affected +# Tsx async abort: Not affected +# * win32 +# Architecture=9 +# CurrentClockSpeed=2900 +# DeviceID=CPU0 +# Family=179 +# L2CacheSize=40960 +# L2CacheSpeed= +# Manufacturer=GenuineIntel +# MaxClockSpeed=2900 +# Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz +# ProcessorType=3 +# Revision=27142 +# +# Architecture=9 +# CurrentClockSpeed=2900 +# DeviceID=CPU1 +# Family=179 +# L2CacheSize=40960 +# L2CacheSpeed= +# Manufacturer=GenuineIntel +# MaxClockSpeed=2900 +# Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz +# ProcessorType=3 +# Revision=27142 + + +def get_cpu_info(run_lambda): + rc, out, err = 0, "", "" + if get_platform() == "linux": + rc, out, err = run_lambda("lscpu") + elif get_platform() == "win32": + rc, out, err = run_lambda( + 'powershell.exe "gwmi -Class Win32_Processor | Select-Object -Property Name,Manufacturer,Family,\ + Architecture,ProcessorType,DeviceID,CurrentClockSpeed,MaxClockSpeed,L2CacheSize,L2CacheSpeed,Revision\ + | ConvertTo-Json"' + ) + if rc == 0: + lst = [] + try: + obj = json.loads(out) + if type(obj) is list: + for o in obj: + lst.append("----------------------") + lst.extend([f"{k}: {v}" for (k, v) in o.items()]) + else: + lst.extend([f"{k}: {v}" for (k, v) in obj.items()]) + except ValueError as e: + lst.append(out) + lst.append(str(e)) + out = "\n".join(lst) + elif get_platform() == "darwin": + rc, out, err = run_lambda("sysctl -n machdep.cpu.brand_string") + cpu_info = "None" + if rc == 0: + cpu_info = out + else: + cpu_info = err + return cpu_info + + +def get_platform(): + if sys.platform.startswith("linux"): + return "linux" + elif sys.platform.startswith("win32"): + return "win32" + elif sys.platform.startswith("cygwin"): + return "cygwin" + elif sys.platform.startswith("darwin"): + return "darwin" + else: + return sys.platform + + +def get_mac_version(run_lambda): + return run_and_parse_first_match(run_lambda, "sw_vers -productVersion", r"(.*)") + + +def get_windows_version(run_lambda): + ret = run_and_read_all( + run_lambda, + 'powershell.exe "gwmi -Class Win32_OperatingSystem | Select-Object -Property Caption,\ + OSArchitecture,Version | ConvertTo-Json"', + ) + try: + obj = json.loads(ret) + ret = f'{obj["Caption"]} ({obj["Version"]} {obj["OSArchitecture"]})' + except ValueError as e: + ret += f"\n{str(e)}" + return ret + + +def get_lsb_version(run_lambda): + return run_and_parse_first_match( + run_lambda, "lsb_release -a", r"Description:\t(.*)" + ) + + +def check_release_file(run_lambda): + return run_and_parse_first_match( + run_lambda, "cat /etc/*-release", r'PRETTY_NAME="(.*)"' + ) + + +def get_os(run_lambda): + from platform import machine + + platform = get_platform() + + if platform == "win32" or platform == "cygwin": + return get_windows_version(run_lambda) + + if platform == "darwin": + version = get_mac_version(run_lambda) + if version is None: + return None + return "macOS {} ({})".format(version, machine()) + + if platform == "linux": + # Ubuntu/Debian based + desc = get_lsb_version(run_lambda) + if desc is not None: + return "{} ({})".format(desc, machine()) + + # Try reading /etc/*-release + desc = check_release_file(run_lambda) + if desc is not None: + return "{} ({})".format(desc, machine()) + + return "{} ({})".format(platform, machine()) + + # Unknown platform + return platform + + +def get_python_platform(): + import platform + + return platform.platform() + + +def get_libc_version(): + import platform + + if get_platform() != "linux": + return "N/A" + return "-".join(platform.libc_ver()) + + +def get_pip_packages(run_lambda, patterns=None): + """Return `pip list` output. Note: will also find conda-installed pytorch and numpy packages.""" + if patterns is None: + patterns = PIP_PATTERNS + COMMON_PATTERNS + NVIDIA_PATTERNS + + pip_version = "pip3" if sys.version[0] == "3" else "pip" + + os.environ["PIP_DISABLE_PIP_VERSION_CHECK"] = "1" + # People generally have pip as `pip` or `pip3` + # But here it is invoked as `python -mpip` + out = run_and_read_all( + run_lambda, [sys.executable, "-mpip", "list", "--format=freeze"] + ) + filtered_out = "\n".join( + line for line in out.splitlines() if any(name in line for name in patterns) + ) + + return pip_version, filtered_out + + +def get_cachingallocator_config(): + ca_config = os.environ.get("PYTORCH_CUDA_ALLOC_CONF", "") + return ca_config + + +def get_cuda_module_loading_config(): + if TORCH_AVAILABLE and torch.cuda.is_available(): + torch.cuda.init() + config = os.environ.get("CUDA_MODULE_LOADING", "") + return config + else: + return "N/A" + + +def is_xnnpack_available(): + if TORCH_AVAILABLE: + import torch.backends.xnnpack + + return str(torch.backends.xnnpack.enabled) # type: ignore[attr-defined] + else: + return "N/A" + + +def get_env_info(): + """ + Collects environment information to aid in debugging. + + The returned environment information contains details on torch version, is debug build + or not, cuda compiled version, gcc version, clang version, cmake version, operating + system, libc version, python version, python platform, CUDA availability, CUDA + runtime version, CUDA module loading config, GPU model and configuration, Nvidia + driver version, cuDNN version, pip version and versions of relevant pip and + conda packages, HIP runtime version, MIOpen runtime version, + Caching allocator config, XNNPACK availability and CPU information. + + Returns: + SystemEnv (namedtuple): A tuple containining various environment details + and system information. + """ + run_lambda = run + pip_version, pip_list_output = get_pip_packages(run_lambda) + + if TORCH_AVAILABLE: + version_str = torch.__version__ + debug_mode_str = str(torch.version.debug) + cuda_available_str = str(torch.cuda.is_available()) + cuda_version_str = torch.version.cuda + if ( + not hasattr(torch.version, "hip") or torch.version.hip is None + ): # cuda version + hip_compiled_version = hip_runtime_version = miopen_runtime_version = "N/A" + else: # HIP version + + def get_version_or_na(cfg, prefix): + _lst = [s.rsplit(None, 1)[-1] for s in cfg if prefix in s] + return _lst[0] if _lst else "N/A" + + cfg = torch._C._show_config().split("\n") + hip_runtime_version = get_version_or_na(cfg, "HIP Runtime") + miopen_runtime_version = get_version_or_na(cfg, "MIOpen") + cuda_version_str = "N/A" + hip_compiled_version = torch.version.hip + else: + version_str = debug_mode_str = cuda_available_str = cuda_version_str = "N/A" + hip_compiled_version = hip_runtime_version = miopen_runtime_version = "N/A" + + sys_version = sys.version.replace("\n", " ") + + conda_packages = get_conda_packages(run_lambda) + + return SystemEnv( + torch_version=version_str, + is_debug_build=debug_mode_str, + python_version="{} ({}-bit runtime)".format( + sys_version, sys.maxsize.bit_length() + 1 + ), + python_platform=get_python_platform(), + is_cuda_available=cuda_available_str, + cuda_compiled_version=cuda_version_str, + cuda_runtime_version=get_running_cuda_version(run_lambda), + cuda_module_loading=get_cuda_module_loading_config(), + nvidia_gpu_models=get_gpu_info(run_lambda), + nvidia_driver_version=get_nvidia_driver_version(run_lambda), + cudnn_version=get_cudnn_version(run_lambda), + hip_compiled_version=hip_compiled_version, + hip_runtime_version=hip_runtime_version, + miopen_runtime_version=miopen_runtime_version, + pip_version=pip_version, + pip_packages=pip_list_output, + conda_packages=conda_packages, + os=get_os(run_lambda), + libc_version=get_libc_version(), + gcc_version=get_gcc_version(run_lambda), + clang_version=get_clang_version(run_lambda), + cmake_version=get_cmake_version(run_lambda), + caching_allocator_config=get_cachingallocator_config(), + is_xnnpack_available=is_xnnpack_available(), + cpu_info=get_cpu_info(run_lambda), + ) + + +env_info_fmt = """ +PyTorch version: {torch_version} +Is debug build: {is_debug_build} +CUDA used to build PyTorch: {cuda_compiled_version} +ROCM used to build PyTorch: {hip_compiled_version} + +OS: {os} +GCC version: {gcc_version} +Clang version: {clang_version} +CMake version: {cmake_version} +Libc version: {libc_version} + +Python version: {python_version} +Python platform: {python_platform} +Is CUDA available: {is_cuda_available} +CUDA runtime version: {cuda_runtime_version} +CUDA_MODULE_LOADING set to: {cuda_module_loading} +GPU models and configuration: {nvidia_gpu_models} +Nvidia driver version: {nvidia_driver_version} +cuDNN version: {cudnn_version} +HIP runtime version: {hip_runtime_version} +MIOpen runtime version: {miopen_runtime_version} +Is XNNPACK available: {is_xnnpack_available} + +CPU: +{cpu_info} + +Versions of relevant libraries: +{pip_packages} +{conda_packages} +""".strip() + + +def pretty_str(envinfo): # noqa: C901 + def replace_nones(dct, replacement="Could not collect"): + for key in dct.keys(): + if dct[key] is not None: + continue + dct[key] = replacement + return dct + + def replace_bools(dct, true="Yes", false="No"): + for key in dct.keys(): + if dct[key] is True: + dct[key] = true + elif dct[key] is False: + dct[key] = false + return dct + + def prepend(text, tag="[prepend]"): + lines = text.split("\n") + updated_lines = [tag + line for line in lines] + return "\n".join(updated_lines) + + def replace_if_empty(text, replacement="No relevant packages"): + if text is not None and len(text) == 0: + return replacement + return text + + def maybe_start_on_next_line(string): + # If `string` is multiline, prepend a \n to it. + if string is not None and len(string.split("\n")) > 1: + return "\n{}\n".format(string) + return string + + mutable_dict = envinfo._asdict() + + # If nvidia_gpu_models is multiline, start on the next line + mutable_dict["nvidia_gpu_models"] = maybe_start_on_next_line( + envinfo.nvidia_gpu_models + ) + + # If the machine doesn't have CUDA, report some fields as 'No CUDA' + dynamic_cuda_fields = [ + "cuda_runtime_version", + "nvidia_gpu_models", + "nvidia_driver_version", + ] + all_cuda_fields = dynamic_cuda_fields + ["cudnn_version"] + all_dynamic_cuda_fields_missing = all( + mutable_dict[field] is None for field in dynamic_cuda_fields + ) + if ( + TORCH_AVAILABLE + and not torch.cuda.is_available() + and all_dynamic_cuda_fields_missing + ): + for field in all_cuda_fields: + mutable_dict[field] = "No CUDA" + if envinfo.cuda_compiled_version is None: + mutable_dict["cuda_compiled_version"] = "None" + + # Replace True with Yes, False with No + mutable_dict = replace_bools(mutable_dict) + + # Replace all None objects with 'Could not collect' + mutable_dict = replace_nones(mutable_dict) + + # If either of these are '', replace with 'No relevant packages' + mutable_dict["pip_packages"] = replace_if_empty(mutable_dict["pip_packages"]) + mutable_dict["conda_packages"] = replace_if_empty(mutable_dict["conda_packages"]) + + # Tag conda and pip packages with a prefix + # If they were previously None, they'll show up as ie '[conda] Could not collect' + if mutable_dict["pip_packages"]: + mutable_dict["pip_packages"] = prepend( + mutable_dict["pip_packages"], "[{}] ".format(envinfo.pip_version) + ) + if mutable_dict["conda_packages"]: + mutable_dict["conda_packages"] = prepend( + mutable_dict["conda_packages"], "[conda] " + ) + mutable_dict["cpu_info"] = envinfo.cpu_info + return env_info_fmt.format(**mutable_dict) + + +def get_pretty_env_info(): + """ + Returns a pretty string of environment information. + + This function retrieves environment information by calling the `get_env_info` function + and then formats the information into a human-readable string. The retrieved environment + information is listed in the document of `get_env_info`. + This function is used in `python collect_env.py` that should be executed when reporting a bug. + + Returns: + str: A pretty string of the environment information. + """ + return pretty_str(get_env_info()) + + +def main(): + print("Collecting environment information...") + output = get_pretty_env_info() + print(output) + + if ( + TORCH_AVAILABLE + and hasattr(torch, "utils") + and hasattr(torch.utils, "_crash_handler") + ): + minidump_dir = torch.utils._crash_handler.DEFAULT_MINIDUMP_DIR + if sys.platform == "linux" and os.path.exists(minidump_dir): + dumps = [ + os.path.join(minidump_dir, dump) for dump in os.listdir(minidump_dir) + ] + latest = max(dumps, key=os.path.getctime) + ctime = os.path.getctime(latest) + creation_time = datetime.datetime.fromtimestamp(ctime).strftime( + "%Y-%m-%d %H:%M:%S" + ) + msg = ( + "\n*** Detected a minidump at {} created on {}, ".format( + latest, creation_time + ) + + "if this is related to your bug please include it when you file a report ***" + ) + print(msg, file=sys.stderr) + + +if __name__ == "__main__": + main()