|
| 1 | +#!/usr/bin/env python3 |
| 2 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 3 | +# All rights reserved. |
| 4 | +# |
| 5 | +# This source code is licensed under the BSD-style license found in the |
| 6 | +# LICENSE file in the root directory of this source tree. |
| 7 | + |
| 8 | +# pyre-strict |
| 9 | +import os |
| 10 | +from dataclasses import dataclass |
| 11 | +from typing import cast, Dict, List |
| 12 | + |
| 13 | +import torch |
| 14 | +import torchrec |
| 15 | +from fbgemm_gpu.split_embedding_configs import EmbOptimType as OptimType |
| 16 | + |
| 17 | +from parameterized import parameterized |
| 18 | +from torch import distributed as dist, nn |
| 19 | +from torch.testing._internal.common_distributed import MultiProcessTestCase |
| 20 | +from torchrec.distributed import DistributedModelParallel |
| 21 | +from torchrec.distributed.embedding import EmbeddingCollectionSharder |
| 22 | +from torchrec.distributed.embedding_types import ModuleSharder, ShardingType |
| 23 | +from torchrec.distributed.embeddingbag import EmbeddingBagCollectionSharder |
| 24 | +from torchrec.distributed.model_tracker.model_delta_tracker import ModelDeltaTracker |
| 25 | +from torchrec.distributed.model_tracker.tests.utils import ( |
| 26 | + EmbeddingTableProps, |
| 27 | + generate_planner_constraints, |
| 28 | + TestEBCModel, |
| 29 | + TestECModel, |
| 30 | +) |
| 31 | + |
| 32 | +from torchrec.distributed.planner import EmbeddingShardingPlanner, Topology |
| 33 | +from torchrec.modules.embedding_configs import ( |
| 34 | + EmbeddingBagConfig, |
| 35 | + EmbeddingConfig, |
| 36 | + PoolingType, |
| 37 | +) |
| 38 | + |
| 39 | +NUM_EMBEDDINGS: int = 16 |
| 40 | +EMBEDDING_DIM: int = 256 |
| 41 | + |
| 42 | + |
| 43 | +class ModelDeltaTrackerTest(MultiProcessTestCase): |
| 44 | + # pyre-fixme[2]: Parameter must be annotated. |
| 45 | + def __init__(self, methodName="runTest") -> None: |
| 46 | + super().__init__(methodName) |
| 47 | + |
| 48 | + @property |
| 49 | + def world_size(self) -> int: |
| 50 | + return 2 |
| 51 | + |
| 52 | + def setUp(self) -> None: |
| 53 | + super().setUp() |
| 54 | + self._spawn_processes() |
| 55 | + |
| 56 | + def tearDown(self) -> None: |
| 57 | + super().tearDown() |
| 58 | + try: |
| 59 | + os.remove(self.file_name) |
| 60 | + except OSError: |
| 61 | + pass |
| 62 | + |
| 63 | + def _get_store(self) -> dist.FileStore: |
| 64 | + return dist.FileStore(self.file_name, self.world_size) |
| 65 | + |
| 66 | + def _get_process_group(self) -> dist.ProcessGroup: |
| 67 | + store = self._get_store() |
| 68 | + dist.init_process_group( |
| 69 | + "nccl", store=store, rank=self.rank, world_size=self.world_size |
| 70 | + ) |
| 71 | + return dist.distributed_c10d._get_default_group() |
| 72 | + |
| 73 | + def _get_models( |
| 74 | + self, |
| 75 | + embedding_type: str, |
| 76 | + tables: Dict[str, EmbeddingTableProps], |
| 77 | + optimizer_type: OptimType = OptimType.ADAM, |
| 78 | + ) -> DistributedModelParallel: |
| 79 | + torch.manual_seed(0) |
| 80 | + torch.cuda.set_device(self.rank) |
| 81 | + pg = self._get_process_group() |
| 82 | + test_model = ( |
| 83 | + TestECModel( |
| 84 | + tables=[ |
| 85 | + EmbeddingConfig( |
| 86 | + name=table_name, |
| 87 | + embedding_dim=table.embedding_dim, |
| 88 | + num_embeddings=table.num_embeddings, |
| 89 | + feature_names=table.feature_names, |
| 90 | + ) |
| 91 | + for table_name, table in tables.items() |
| 92 | + ] |
| 93 | + ) |
| 94 | + if embedding_type == "EC" |
| 95 | + else TestEBCModel( |
| 96 | + tables=[ |
| 97 | + EmbeddingBagConfig( |
| 98 | + name=table_name, |
| 99 | + embedding_dim=table.embedding_dim, |
| 100 | + num_embeddings=table.num_embeddings, |
| 101 | + feature_names=table.feature_names, |
| 102 | + pooling=table.pooling, |
| 103 | + ) |
| 104 | + for table_name, table in tables.items() |
| 105 | + ] |
| 106 | + ) |
| 107 | + ) |
| 108 | + planner = EmbeddingShardingPlanner( |
| 109 | + topology=Topology(self.world_size, "cuda"), |
| 110 | + constraints=generate_planner_constraints(tables), |
| 111 | + ) |
| 112 | + sharders = [ |
| 113 | + cast( |
| 114 | + ModuleSharder[nn.Module], |
| 115 | + EmbeddingCollectionSharder( |
| 116 | + fused_params={ |
| 117 | + "optimizer": optimizer_type, |
| 118 | + "beta1": 0.9, |
| 119 | + "beta2": 0.99, |
| 120 | + } |
| 121 | + ), |
| 122 | + ), |
| 123 | + cast( |
| 124 | + ModuleSharder[nn.Module], |
| 125 | + EmbeddingBagCollectionSharder( |
| 126 | + fused_params={"optimizer": optimizer_type} |
| 127 | + ), |
| 128 | + ), |
| 129 | + ] |
| 130 | + plan = planner.collective_plan(test_model, sharders, pg) |
| 131 | + return DistributedModelParallel( |
| 132 | + module=test_model, |
| 133 | + device=torch.device(f"cuda:{self.rank}"), |
| 134 | + env=torchrec.distributed.ShardingEnv.from_process_group(pg), |
| 135 | + plan=plan, |
| 136 | + sharders=sharders, |
| 137 | + ) |
| 138 | + |
| 139 | + @dataclass |
| 140 | + class ModelDeltaTrackerInputTestParams: |
| 141 | + # input parameters |
| 142 | + embedding_type: str |
| 143 | + embedding_tables: Dict[str, EmbeddingTableProps] |
| 144 | + fqns_to_skip: List[str] |
| 145 | + |
| 146 | + @dataclass |
| 147 | + class FqnToFeatureNamesOutputTestParams: |
| 148 | + # expected output parameters |
| 149 | + expected_fqn_to_feature_names: Dict[str, List[str]] |
| 150 | + |
| 151 | + @parameterized.expand( |
| 152 | + [ |
| 153 | + ( |
| 154 | + "EC_model_test", |
| 155 | + ModelDeltaTrackerInputTestParams( |
| 156 | + embedding_type="EC", |
| 157 | + embedding_tables={ |
| 158 | + "sparse_table_1": EmbeddingTableProps( |
| 159 | + num_embeddings=NUM_EMBEDDINGS, |
| 160 | + embedding_dim=EMBEDDING_DIM, |
| 161 | + sharding=ShardingType.ROW_WISE, |
| 162 | + feature_names=["f1", "f2", "f3"], |
| 163 | + pooling=PoolingType.NONE, |
| 164 | + ), |
| 165 | + "sparse_table_2": EmbeddingTableProps( |
| 166 | + num_embeddings=NUM_EMBEDDINGS, |
| 167 | + embedding_dim=EMBEDDING_DIM, |
| 168 | + sharding=ShardingType.ROW_WISE, |
| 169 | + feature_names=["f4", "f5", "f6"], |
| 170 | + pooling=PoolingType.NONE, |
| 171 | + ), |
| 172 | + }, |
| 173 | + fqns_to_skip=[], |
| 174 | + ), |
| 175 | + FqnToFeatureNamesOutputTestParams( |
| 176 | + expected_fqn_to_feature_names={ |
| 177 | + "ec.embeddings.sparse_table_1": ["f1", "f2", "f3"], |
| 178 | + "ec.embeddings.sparse_table_2": ["f4", "f5", "f6"], |
| 179 | + }, |
| 180 | + ), |
| 181 | + ), |
| 182 | + ( |
| 183 | + "EBC_model_test", |
| 184 | + ModelDeltaTrackerInputTestParams( |
| 185 | + embedding_type="EBC", |
| 186 | + embedding_tables={ |
| 187 | + "sparse_table_1": EmbeddingTableProps( |
| 188 | + num_embeddings=NUM_EMBEDDINGS, |
| 189 | + embedding_dim=EMBEDDING_DIM, |
| 190 | + sharding=ShardingType.ROW_WISE, |
| 191 | + feature_names=["f1", "f2", "f3"], |
| 192 | + pooling=PoolingType.SUM, |
| 193 | + ), |
| 194 | + "sparse_table_2": EmbeddingTableProps( |
| 195 | + num_embeddings=NUM_EMBEDDINGS, |
| 196 | + embedding_dim=EMBEDDING_DIM, |
| 197 | + sharding=ShardingType.ROW_WISE, |
| 198 | + feature_names=["f4", "f5", "f6"], |
| 199 | + pooling=PoolingType.SUM, |
| 200 | + ), |
| 201 | + }, |
| 202 | + fqns_to_skip=[], |
| 203 | + ), |
| 204 | + FqnToFeatureNamesOutputTestParams( |
| 205 | + expected_fqn_to_feature_names={ |
| 206 | + "ebc.embedding_bags.sparse_table_1": ["f1", "f2", "f3"], |
| 207 | + "ebc.embedding_bags.sparse_table_2": ["f4", "f5", "f6"], |
| 208 | + }, |
| 209 | + ), |
| 210 | + ), |
| 211 | + ( |
| 212 | + "EC_model_test_with_duplicate_feature_names", |
| 213 | + ModelDeltaTrackerInputTestParams( |
| 214 | + embedding_type="EC", |
| 215 | + embedding_tables={ |
| 216 | + "sparse_table_1": EmbeddingTableProps( |
| 217 | + num_embeddings=NUM_EMBEDDINGS, |
| 218 | + embedding_dim=EMBEDDING_DIM, |
| 219 | + sharding=ShardingType.ROW_WISE, |
| 220 | + feature_names=["f1", "f2", "f3"], |
| 221 | + pooling=PoolingType.NONE, |
| 222 | + ), |
| 223 | + "sparse_table_2": EmbeddingTableProps( |
| 224 | + num_embeddings=NUM_EMBEDDINGS, |
| 225 | + embedding_dim=EMBEDDING_DIM, |
| 226 | + sharding=ShardingType.ROW_WISE, |
| 227 | + feature_names=["f3", "f4", "f5"], |
| 228 | + pooling=PoolingType.NONE, |
| 229 | + ), |
| 230 | + }, |
| 231 | + fqns_to_skip=[], |
| 232 | + ), |
| 233 | + FqnToFeatureNamesOutputTestParams( |
| 234 | + expected_fqn_to_feature_names={ |
| 235 | + "ec.embeddings.sparse_table_1": ["f1", "f2", "f3"], |
| 236 | + "ec.embeddings.sparse_table_2": ["f3", "f4", "f5"], |
| 237 | + }, |
| 238 | + ), |
| 239 | + ), |
| 240 | + ( |
| 241 | + "EBC_model_test_fqns_to_skip", |
| 242 | + ModelDeltaTrackerInputTestParams( |
| 243 | + embedding_type="EBC", |
| 244 | + embedding_tables={ |
| 245 | + "sparse_table_1": EmbeddingTableProps( |
| 246 | + num_embeddings=NUM_EMBEDDINGS, |
| 247 | + embedding_dim=EMBEDDING_DIM, |
| 248 | + sharding=ShardingType.ROW_WISE, |
| 249 | + feature_names=["f1", "f2", "f3"], |
| 250 | + pooling=PoolingType.SUM, |
| 251 | + ), |
| 252 | + "sparse_table_2": EmbeddingTableProps( |
| 253 | + num_embeddings=NUM_EMBEDDINGS, |
| 254 | + embedding_dim=EMBEDDING_DIM, |
| 255 | + sharding=ShardingType.ROW_WISE, |
| 256 | + feature_names=["f4", "f5", "f6"], |
| 257 | + pooling=PoolingType.SUM, |
| 258 | + ), |
| 259 | + }, |
| 260 | + fqns_to_skip=["sparse_table_1"], |
| 261 | + ), |
| 262 | + FqnToFeatureNamesOutputTestParams( |
| 263 | + expected_fqn_to_feature_names={ |
| 264 | + "ebc.embedding_bags.sparse_table_2": ["f4", "f5", "f6"], |
| 265 | + }, |
| 266 | + ), |
| 267 | + ), |
| 268 | + ] |
| 269 | + ) |
| 270 | + def test_fqn_to_feature_names( |
| 271 | + self, |
| 272 | + _test_name: str, |
| 273 | + input_params: ModelDeltaTrackerInputTestParams, |
| 274 | + output_params: FqnToFeatureNamesOutputTestParams, |
| 275 | + ) -> None: |
| 276 | + model = self._get_models( |
| 277 | + input_params.embedding_type, input_params.embedding_tables |
| 278 | + ) |
| 279 | + model_dt = ModelDeltaTracker(model, fqns_to_skip=input_params.fqns_to_skip) |
| 280 | + self.assertEqual( |
| 281 | + model_dt.fqn_to_feature_names(), output_params.expected_fqn_to_feature_names |
| 282 | + ) |
0 commit comments