|
| 1 | +""" |
| 2 | +(beta) Utilizing Torch Function modes with torch.compile |
| 3 | +============================================================ |
| 4 | +
|
| 5 | +**Author:** `Michael Lazos <https://github.com/mlazos>`_ |
| 6 | +""" |
| 7 | + |
| 8 | +######################################################### |
| 9 | +# This recipe covers how to use a key torch extensibility point, |
| 10 | +# torch function modes, in tandem with ``torch.compile`` to override |
| 11 | +# the behavior of torch operators, also know as **ops**, at trace time, with no runtime overhead. |
| 12 | +# |
| 13 | +# .. note:: |
| 14 | +# |
| 15 | +# This recipe requires PyTorch 2.7.0 or later. |
| 16 | + |
| 17 | + |
| 18 | +##################################################################### |
| 19 | +# Rewriting a torch op (torch.add -> torch.mul) |
| 20 | +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 21 | +# For this example, we'll use torch function modes to rewrite occurences |
| 22 | +# of addition with multiply instead. This type of override can be common |
| 23 | +# if a certain backend has a custom implementation that should be dispatched |
| 24 | +# for a given op. |
| 25 | +import torch |
| 26 | + |
| 27 | +# exit cleanly if we are on a device that doesn't support ``torch.compile`` |
| 28 | +if torch.cuda.get_device_capability() < (7, 0): |
| 29 | + print("Exiting because torch.compile is not supported on this device.") |
| 30 | + import sys |
| 31 | + sys.exit(0) |
| 32 | + |
| 33 | +from torch.overrides import BaseTorchFunctionMode |
| 34 | + |
| 35 | +# Define our mode, Note: ``BaseTorchFunctionMode`` |
| 36 | +# implements the actual invocation of func(..) |
| 37 | +class AddToMultiplyMode(BaseTorchFunctionMode): |
| 38 | + def __torch_function__(self, func, types, args=(), kwargs=None): |
| 39 | + if func == torch.Tensor.add: |
| 40 | + func = torch.mul |
| 41 | + |
| 42 | + return super().__torch_function__(func, types, args, kwargs) |
| 43 | + |
| 44 | +@torch.compile() |
| 45 | +def test_fn(x, y): |
| 46 | + return x + y * x # Note: infix operators map to torch.Tensor.* methods |
| 47 | + |
| 48 | +x = torch.rand(2, 2) |
| 49 | +y = torch.rand_like(x) |
| 50 | + |
| 51 | +with AddToMultiplyMode(): |
| 52 | + z = test_fn(x, y) |
| 53 | + |
| 54 | +assert torch.allclose(z, x * y * x) |
| 55 | + |
| 56 | +# The mode can also be used within the compiled region as well like this: |
| 57 | + |
| 58 | +@torch.compile() |
| 59 | +def test_fn(x, y): |
| 60 | + with AddToMultiplyMode(): |
| 61 | + return x + y * x # Note: infix operators map to torch.Tensor.* methods |
| 62 | + |
| 63 | +x = torch.rand(2, 2) |
| 64 | +y = torch.rand_like(x) |
| 65 | +z = test_fn(x, y) |
| 66 | + |
| 67 | +assert torch.allclose(z, x * y * x) |
| 68 | + |
| 69 | +###################################################################### |
| 70 | +# Conclusion |
| 71 | +# ~~~~~~~~~~ |
| 72 | +# In this recipe we demonstrated how to override the behavior of ``torch.*`` operators |
| 73 | +# using torch function modes from within ``torch.compile``. This enables users to utilize |
| 74 | +# the extensibility benefits of torch function modes without the runtime overhead |
| 75 | +# of calling torch function on every op invocation. |
| 76 | +# |
| 77 | +# * See `Extending Torch API with Modes <https://pytorch.org/docs/stable/notes/extending.html#extending-all-torch-api-with-modes>`__ for other examples and background on Torch Function modes. |
0 commit comments